Skip to main content

Development of a Compartmentalized Biochip for Axonal Isolation and Neuronal-Circuit Formation at the Single-Cell Level

  • Protocol
  • First Online:
  • 1066 Accesses

Part of the book series: Neuromethods ((NM,volume 103))

Abstract

In vitro neuronal networks in cell cultures have tremendous potential for the investigation of synapse formation, development, and function, especially with the development of microelectrode arrays. Most current techniques used to form a defined neuronal network are based on microcontact-printing, but the intercellular connections in the patterned low-density network are formed randomly, systematic study of a specific network is not possible. For such study, a practical tool for creating defined neuronal networks in which each intercellular connection can be formed according to a predetermined pattern is critical. In addition, because glia—particularly astrocytes—play an important role in neuronal network processing, a precise platform to study glia–neuron interaction at the single-cell level is necessary. In this chapter we describe a biochip-microfabrication technique and a unique laser cell-micropatterning system for creation of a compartmentalized, axon-isolating, polarized neuron-growth platform at the single-cell level.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pine J (1980) Recording action-potentials from cultured neurons with extracellular micro-circuit electrodes. J Neurosci Methods 2(1):19–31

    Article  CAS  PubMed  Google Scholar 

  2. Potter SM (2001) Chapter 4: Distributed processing in cultured neuronal networks. In: Nicolelis MAL (ed) Progress in brain research, vol 130. Elsevier, Amsterdam, pp 49–62

    Google Scholar 

  3. Johnstone AFM et al (2010) Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4):331–350

    Article  CAS  PubMed  Google Scholar 

  4. Engle EC (2010) Human genetic disorders of axon guidance. Cold Spring Harb Perspect Biol 2(3):a001784

    Article  PubMed Central  PubMed  Google Scholar 

  5. Raper J, Mason C (2010) Cellular strategies of axonal pathfinding. Cold Spring Harb Perspect Biol 2(9):a001933

    Article  PubMed Central  PubMed  Google Scholar 

  6. Fricke R et al (2011) Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials 32(8):2070–2076

    Article  CAS  PubMed  Google Scholar 

  7. James CD et al (2004) Extracellular recordings from patterned neuronal networks using planar microelectrode arrays. IEEE Trans Biomed Eng 51(9):1640–1648

    Article  PubMed  Google Scholar 

  8. Jun SB et al (2007) Low-density neuronal networks cultured using patterned poly-L-lysine on microelectrode arrays. J Neurosci Methods 160(2):317–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jungblut M et al (2009) Triangular neuronal networks on microelectrode arrays: an approach to improve the properties of low-density networks for extracellular recording. Biomed Microdevices 11(6):1269–1278

    Article  PubMed Central  PubMed  Google Scholar 

  10. Sprossler C et al (2001) Model network architectures in vitro on extracellular recording systems using microcontact printing. Synth Met 117(1–3):281–283

    Article  CAS  Google Scholar 

  11. Berdondini L et al (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9(18):2644–2651

    Article  CAS  PubMed  Google Scholar 

  12. Yun KS, Yoon E (2005) Micro/nanofluidic device for single-cell-based assay. Biomed Microdevices 7(1):35–40

    Article  CAS  PubMed  Google Scholar 

  13. Condic ML, Bentley D (1989) Pioneer neuron pathfinding from normal and ectopic locations in vivo after removal of the basal lamina. Neuron 3(4):427–439

    Article  CAS  PubMed  Google Scholar 

  14. Slezak M, Pfrieger FW (2003) New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci 26(10):531–535

    Article  CAS  PubMed  Google Scholar 

  15. Boehler MD et al (2007) Added astroglia promote greater synapse density and higher activity in neuronal networks. Neuron Glia Biol 3:127–140

    Article  PubMed Central  PubMed  Google Scholar 

  16. Francisco H et al (2007) Regulation of axon guidance and extension by three-dimensional constraints. Biomaterials 28(23):3398–3407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gomez N et al (2007) Polarization of hippocampal neurons with competitive surface stimuli: contact guidance cues are preferred over chemical ligands. J R Soc Interface 4(13):223–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mahoney MJ et al (2005) The influence of microchannels on neurite growth and architecture. Biomaterials 26(7):771–778

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki I et al (2005) Stepwise pattern modification of neuronal network in photo-thermally-etched agarose architecture on multi-electrode array chip for individual-cell-based electrophysiological measurement. Lab Chip 5(3):241–247

    Article  CAS  PubMed  Google Scholar 

  20. Smeal RM et al (2005) Substrate curvature influences the direction of nerve outgrowth. Ann Biomed Eng 33(3):376–382

    Article  PubMed  Google Scholar 

  21. Pirlo RK et al (2011) Biochip/laser cell deposition system to assess polarized axonal growth from single neurons and neuron/glia pairs in microchannels with novel asymmetrical geometries. Biomicrofluidics 5(1):13408

    Article  CAS  PubMed  Google Scholar 

  22. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A 74(10):4516–4519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Park JW et al (2009) Novel microfluidic platform for culturing neurons: culturing and biochemical analysis of neuronal components. Biotechnol J 4(11):1573–1577

    Article  CAS  PubMed  Google Scholar 

  24. Taylor AM et al (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):599–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lee JN et al (2004) Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 20(26):11684–11691

    Article  CAS  PubMed  Google Scholar 

  26. Majumdar D et al (2011) Co-culture of neurons and glia in a novel microfluidic platform. J Neurosci Methods 196(1):38–44

    Article  PubMed Central  PubMed  Google Scholar 

  27. Park J et al (2012) Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab Chip 12(18):3296–3304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pirlo RK et al (2011) Laser-guided cell micropatterning system. Rev Sci Instrum 82(1):013708

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ma Z et al (2013) Laser patterning for the study of MSC cardiogenic differentiation at the single-cell level. Light Sci Appl 2(5):e68

    Article  Google Scholar 

  30. Hajizadeh F, Reihani SNS (2010) Optimized optical trapping of gold nanoparticles. Opt Express 18(2):551–559

    Article  CAS  PubMed  Google Scholar 

  31. Millet LJ et al (2007) Microfluidic devices for culturing primary mammalian neurons at low densities. Lab Chip 7(8):987–994

    Article  CAS  PubMed  Google Scholar 

  32. Heidemann SR et al (2003) The culture of chick forebrain neurons. Methods Cell Biol 71:51–65

    Article  PubMed  Google Scholar 

  33. Kentroti S, Vernadakis A (1997) Differential expression in glial cells derived from chick embryo cerebral hemispheres at an advanced stage of development. J Neurosci Res 47(3):322–331

    Article  CAS  PubMed  Google Scholar 

  34. Zhang WY et al (2004) Elastomer-supported cold welding for room temperature wafer-level bonding. In Seventeenth IEEE international conference on micro electro mechanical system, pp 741–744

    Google Scholar 

  35. Qin W et al (2013) Laser guidance-based cell detection in a microfluidic biochip. J Biomed Opt 18(6):060502

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31070847, 31370956), Strategic New Industry Development Special Foundation of Shenzhen (No. JCYJ20130402172114948), Guangdong Provincial Department of Science and Technology, China (2011B050400011), and NIH COBRE grant from NIGMS (NIH P20GM103444). Dr. DeSilva would like to thank the support from Naval Medical Research Unit San Antonio under Work Unit Number G1009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Z. Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huang, T. et al. (2015). Development of a Compartmentalized Biochip for Axonal Isolation and Neuronal-Circuit Formation at the Single-Cell Level. In: Biffi, E. (eds) Microfluidic and Compartmentalized Platforms for Neurobiological Research. Neuromethods, vol 103. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2510-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2510-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2509-4

  • Online ISBN: 978-1-4939-2510-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics