Skip to main content

Asymmetric Genetic Manipulation and Patch Clamp Recording of Neurons in a Microfluidic Chip

  • Protocol
  • First Online:
Book cover Microfluidic and Compartmentalized Platforms for Neurobiological Research

Part of the book series: Neuromethods ((NM,volume 103))

Abstract

Studying the formation and function of neuronal circuitry is complicated by the heterogeneity and high density of neuronal processes and synapses. Compartmentalized cell culture systems offer a simple yet powerful solution for isolation of axons from dendrites and cell somas. This chapter describes how to manufacture and use a microfluidic chip with a modular design for highly defined isolation of axons, asymmetric genetic manipulation, and whole-cell patch clamp recording. The microfluidic chip consists of detachable and resealable layers that allow multiple modes of operation during cell culture, fluidic isolation for limited transfection, and recording with low-angle electrode access. This versatile technique is useful for functional studies that require specific expression of for example optogenetic tools in presynaptic neurons or for studying the entry of pathogenic particles, such as viruses or oligomers of misfolded proteins, into presynaptic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu HI, Cheng GH, Wong YY, Lin CM, Fang W, Chow WY, Chang YC (2010) A lab-on-a-chip platform for studying subcellular functional proteome of neuronal axons. Lab Chip 11:647–653

    Article  Google Scholar 

  2. Taylor AM, Berchtold NC, Perreau VM, Tu CH, Li JN, Cotman CW (2009) Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 11:4697–4707

    Article  Google Scholar 

  3. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A 11:4516–4519

    Article  Google Scholar 

  4. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 11:599–605

    Article  Google Scholar 

  5. Sutton MA, Taylor AM, Ito HT, Pham A, Schuman EM (2007) Postsynaptic decoding of neuronal activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 11:648–661

    Article  Google Scholar 

  6. Osakada Y, Cui B (2011) Real-time visualization of axonal transport in neurons. Methods Mol Biol 11:231–243

    Google Scholar 

  7. Harrington AW, Ginty DD (2013) Long-distance retrograde neurotrophic factor signalling neurons. Nat Rev Neurosci 11:177–187

    Article  Google Scholar 

  8. Ionescu-Zanetti C, Shaw RM, Seo J, Jan YN, Lee LP (2005) Mammalian electrophysiology on a microfluidic platform. Proc Natl Acad Sci U S A 11:9112–9117

    Article  Google Scholar 

  9. Martina M, Luk C, Py C, Martinez D, Comas T, Monette R, Denhoff M, Syed N, Mealing GA (2011) Recordings of cultured neurons and synaptic activity using patch-clamp chips. J Neural Eng 11:034002

    Article  Google Scholar 

  10. Jokinen V, Sakha P, Suvanto P, Rivera C, Franssila S, Lauri SE, Huttunen HJ (2013) A microfluidic chip for axonal isolation and electrophysiological measurements. J Neurosci Methods 212:276–282

    Article  PubMed  Google Scholar 

  11. Resto PJ, Morgen BJ, Berthier E, Williams JC (2010) An automated microfroplet passive pumping platform for high-speed and packeted microfluidic flow application. Lab Chip 10:23–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Taylor AM, Rhee SW, Tu CH, Cribbs DH, Cotman CW, Jeon NL (2003) Microfluidic multicompartment device for neuroscience research. Langmuir 19:1551–1556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  CAS  PubMed  Google Scholar 

  14. Buchhalter JR, Dichter MA (1991) Electrophysiological comparison of pyramidal and stellate nonpyramidal neurons in dissociated cell culture of rat hippocampus. Brain Res Bull 26(3):333–338

    Article  CAS  PubMed  Google Scholar 

  15. Mynlieff M (1999) Identification of different putative neuronal subtypes in cultures of the superior region of the hippocampus using electrophysiological parameters. Neuroscience 93(2):479–486

    Article  CAS  PubMed  Google Scholar 

  16. Segal M (1983) Rat hippocampal neurons in culture: responses to electrical and chemical stimuli. J Neurophysiol 50(6):1249–1264

    CAS  PubMed  Google Scholar 

  17. Yang J, Thio LL, Clifford DB, Zorumski CF (1993) Electrophysiological properties of identified postnatal rat hippocampal pyramidal neurons in primary culture. Brain Res Dev Brain Res 71(1):19–26

    Article  CAS  PubMed  Google Scholar 

  18. Carlborg CF, Haraldsson T, Cornaglia M, Stemme G (2010) High-yield process for 3-D large-scale integrated microfluidic networks in PDMS. J Microelectromech Syst 19:1050–1057

    Article  CAS  Google Scholar 

  19. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Academy of Finland (grant #253223 and grant #266820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Jokinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sakha, P., Brunello, C., Heikkinen, J., Jokinen, V., Huttunen, H.J. (2015). Asymmetric Genetic Manipulation and Patch Clamp Recording of Neurons in a Microfluidic Chip. In: Biffi, E. (eds) Microfluidic and Compartmentalized Platforms for Neurobiological Research. Neuromethods, vol 103. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2510-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2510-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2509-4

  • Online ISBN: 978-1-4939-2510-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics