Skip to main content

Compartmentalized Synapse Microarray for High-Throughput Screening

  • Protocol
  • First Online:
Microfluidic and Compartmentalized Platforms for Neurobiological Research

Part of the book series: Neuromethods ((NM,volume 103))

  • 906 Accesses

Abstract

Dissociated primary neuronal cell culture remains an indispensible approach for neurobiology research in order to investigate basic mechanisms underlying diverse neuronal functions, including synaptogenesis. Synaptic function is affected in many brain diseases and disorders. The bidirectional nature of synaptic signaling and the presence of a multitude of transsynaptic signals make it complicated to study the direct effects of regulatory factors during synapse assembly. Neuron–fibroblast cocultures have proven to be a powerful technique to study several aspects of synaptogenesis; however, they suffer from low throughput and limited quantitative outcome. The development of high-throughput technologies for genetic and chemical screening can be significantly advanced by miniaturization. The recent development in the area of microfabrication and microfluidics has enabled creation of microscale-compartmentalized devices for neurobiology. These devices are cheap, are easy to manufacture, require reduced sample volumes, enable precise control over the cellular microenvironment both spatially and temporally, and permit high-throughput testing. In this chapter, we describe the protocol and methodological considerations for developing synapse microarray that enables ultrasensitive, high-throughput and quantitative screening of small molecules involved in synaptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park JW et al (2006) Microfluidic culture platform for neuroscience research. Nat Protoc 1(4):2128–2136

    Article  CAS  PubMed  Google Scholar 

  2. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274(5290):1123–1133

    Article  CAS  PubMed  Google Scholar 

  3. Nedelec S et al (2012) Concentration-dependent requirement for local protein synthesis in motor neuron subtype-specific response to axon guidance cues. J Neurosci 32(4):1496–1506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Nishikimi M, Oishi K, Nakajima K (2013) Axon guidance mechanisms for establishment of callosal connections. Neural Plast 2013:149060

    PubMed Central  PubMed  Google Scholar 

  5. Deck M et al (2013) Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron 77(3):472–484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Paola V, Plazas XN (2013) Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3. Proc Natl Acad Sci U S A 110:1524

    Article  Google Scholar 

  7. Leung LC et al (2013) Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation. Nat Neurosci 16(2):166–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wright KM et al (2012) Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron 76(5):931–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Duman-Scheel M (2012) Deleted in Colorectal Cancer (DCC) pathfinding: axon guidance gene finally turned tumor suppressor. Curr Drug Targets 13:1445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Huettl RE, Haehl T, Huber AB (2012) Fasciculation and guidance of spinal motor axons in the absence of FGFR2 signaling. PLoS One 7(7):e41095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. McAllister AK (2007) Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 30:425–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ko J (2009) LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64:791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Siddiqui TJ et al (2010) LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci 30(22):7495–7506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bennett SA et al (2013) Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer’s Disease. Front Physiol 4:168

    Article  PubMed Central  PubMed  Google Scholar 

  15. Fletcher TL, De Camilli P, Banker G (1994) Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J Neurosci 14(11):6695–6706

    Google Scholar 

  16. Martin SJ (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649

    Article  CAS  PubMed  Google Scholar 

  17. Hashimoto T et al (2013) Plasticity-related gene 1 is important for survival of neurons derived from rat neural stem cells. J Neurosci Res 91:1402

    Article  CAS  PubMed  Google Scholar 

  18. Udupa K, Chen R (2013) Motor cortical plasticity in Parkinson’s disease. Front Neurol 4:128

    PubMed Central  PubMed  Google Scholar 

  19. Barth AL, Kuhlman SJ (2013) The many layers of specification and plasticity in the neocortex. Neuron 79(5):829–831

    Article  CAS  PubMed  Google Scholar 

  20. Boulland JL et al (2013) A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration. PLoS One 8(8):e71701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Shiga S (2013) Photoperiodic plasticity in circadian clock neurons in insects. Front Physiol 4:69

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lignani G et al (2013) Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity. Front Mol Neurosci 6:22

    Article  PubMed Central  PubMed  Google Scholar 

  23. Judas M, Sedmak G, Kostovic I (2013) The significance of the subplate for evolution and developmental plasticity of the human brain. Front Hum Neurosci 7:423

    Article  PubMed Central  PubMed  Google Scholar 

  24. Li Z, Sheng M (2003) Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol 4(11):833–841

    Article  CAS  PubMed  Google Scholar 

  25. Waites CL, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28:251–274

    Article  CAS  PubMed  Google Scholar 

  26. Shen K, Scheiffele P (2010) Genetics and cell biology of building specific synaptic connectivity. Annu Rev Neurosci 33:473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pautot S et al (2005) Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers. Nat Chem Biol 1(5):283–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Scheiffele P et al (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6):657–669

    Article  CAS  PubMed  Google Scholar 

  29. Biederer T et al (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297(5586):1525–1531

    Article  CAS  PubMed  Google Scholar 

  30. Kim S et al (2006) NGL family PSD-95-interacting adhesion molecules regulate excitatory synapse formation. Nat Neurosci 9(10):1294–1301

    Article  CAS  PubMed  Google Scholar 

  31. Linhoff MW et al (2009) An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron 61(5):734–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kalashnikova E et al (2010) SynDIG1: an activity-regulated, AMPA-receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 65(1):80–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6(8):603–614

    Article  CAS  PubMed  Google Scholar 

  34. Gospodarowicz D et al (1987) Structural characterization and biological functions of fibroblast growth factor. Endocr Rev 8(2):95–114

    Article  CAS  PubMed  Google Scholar 

  35. Taylor AM et al (2003) Microfluidic multicompartment device for neuroscience research. Langmuir 19(5):1551–1556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Millet LJ et al (2010) Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip 10(12):1525–1535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Taylor AM et al (2010) Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron 66(1):57–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Dworak BJ, Wheeler BC (2009) Novel MEA platform with PDMS microtunnels enables the detection of action potential propagation from isolated axons in culture. Lab Chip 9(3):404–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Pan L et al (2011) Propagation of action potential activity in a predefined microtunnel neural network. J Neural Eng 8(4):046031

    Article  PubMed Central  PubMed  Google Scholar 

  40. Park J et al (2012) Multi-compartment neuron–glia co-culture platform for localized CNS axon–glia interaction study. Lab Chip 12(18):3296–3304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hosmane S et al (2010) Circular compartmentalized microfluidic platform: study of axon–glia interactions. Lab Chip 10(6):741–747

    Article  CAS  PubMed  Google Scholar 

  42. Park JW et al (2009) Novel microfluidic platform for culturing neurons: culturing and biochemical analysis of neuronal components. Biotechnol J 4(11):1573–1577

    Article  CAS  PubMed  Google Scholar 

  43. Shi P et al (2011) Synapse microarray identification of small molecules that enhance synaptogenesis. Nat Commun 2:510

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jadhav, A.D., Li, W., Xu, Z., Shi, P. (2015). Compartmentalized Synapse Microarray for High-Throughput Screening. In: Biffi, E. (eds) Microfluidic and Compartmentalized Platforms for Neurobiological Research. Neuromethods, vol 103. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2510-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2510-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2509-4

  • Online ISBN: 978-1-4939-2510-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics