Skip to main content

Generating and Identifying Axolotls with Targeted Mutations Using Cas9 RNA-Guided Nuclease

  • Protocol
  • First Online:
Book cover Salamanders in Regeneration Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1290))

Abstract

The CRISPR/Cas9 RNA-guided nuclease now enables a reverse genetics approach to investigate the function of genes of interest during regeneration in the axolotl. The process of generating the constructs necessary for targeting a gene of interest is considerably less labor intensive than for other methods of targeted mutagenesis such as Zinc finger nucleases or Transcription activator-like effector nucleases. Here, we describe the identification of targetable sequences in the gene of interest, the construction of unique guide RNAs, the microinjection of these RNAs with Cas9-encoding mRNA, the selection of well-injected animals, and an inexpensive, PCR-based method for identifying highly mutagenized animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malacinski GM (1989) Developmental Genetics. In: Malacinski GM, Armstrong JB (eds) Dev. Biol. Axolotl. Oxford University Press, New York, NY, pp 103–109

    Google Scholar 

  2. Voss SR, Epperlein HH, Tanaka EM (2009) Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc 2009:pdb.emo128. doi:10.1101/pdb.emo128

  3. Monaghan JR, Athippozhy A, Seifert AW, Putta S, Stromberg AJ, Maden M, Gardiner DM, Voss SR (2012) Gene expression patterns specific to the regenerating limb of the Mexican axolotl. Biol Open 1:937–948. doi:10.1242/bio.20121594

    Article  Google Scholar 

  4. Campbell LJ, Suárez-Castillo EC, Ortiz-Zuazaga H, Knapp D, Tanaka EM, Crews CM (2011) Gene expression profile of the regeneration epithelium during axolotl limb regeneration. Dev Dyn 240:1826–1840

    Article  CAS  Google Scholar 

  5. Knapp D, Schulz H, Rascon CA, Volkmer M, Scholz J, Nacu E, Le M, Novozhilov S, Tazaki A, Protze S, Jacob T, Hubner N, Habermann B, Tanaka EM (2013) Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program. PLoS One 8:e61352. doi:10.1371/journal.pone.0061352

    Article  CAS  Google Scholar 

  6. Holman EC, Campbell LJ, Hines J, Crews CM (2012) Microarray analysis of microRNA expression during axolotl limb regeneration. PLoS One 7:e41804. doi:10.1371/journal.pone.0041804

    Article  CAS  Google Scholar 

  7. Stewart R, Rascón CA, Tian S, Nie J, Barry C, Chu L-F, Ardalani H, Wagner RJ, Probasco MD, Bolin JM, Leng N, Sengupta S, Volkmer M, Habermann B, Tanaka EM, Thomson JA, Dewey CN (2013) Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. PLoS Comput Biol 9:e1002936. doi:10.1371/journal.pcbi.1002936

    Article  CAS  Google Scholar 

  8. Wu C-H, Tsai M-H, Ho C-C, Chen C-Y, Lee H-S (2013) De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. BMC Genomics 14:434. doi:10.1186/1471-2164-14-434

    Article  CAS  Google Scholar 

  9. Monaghan JR, Epp LG, Putta S, Page RB, Walker JA, Beachy CK, Zhu W, Pao GM, Verma IM, Hunter T, Bryant SV, Gardiner DM, Harkins TT, Voss SR (2009) Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration. BMC Biol 7:1. doi:10.1186/1741-7007-7-1

    Article  Google Scholar 

  10. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  CAS  Google Scholar 

  11. Wood AJ, Lo T-W, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307

    Article  CAS  Google Scholar 

  12. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh J-RJ, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  Google Scholar 

  13. Flowers GP, Timberlake AT, McLean KC, Monaghan JR, Crews CM (2014) Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development 141:2165–2171

    Article  CAS  Google Scholar 

  14. Smith JJ, Putta S, Walker JA, Kump DK, Samuels AK, Monaghan JR, Weisrock DW, Staben C, Voss SR (2005) Sal-Site: Integrating new and existing ambystomatid salamander research and informational resources. BMC Genomics 6:181. doi:10.1186/1471-2164-6-181

    Article  Google Scholar 

  15. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    Article  CAS  Google Scholar 

  16. Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, Joung JK, Peterson RT, Yeh J-RJ (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8:e68708. doi:10.1371/journal.pone.0068708

    Article  CAS  Google Scholar 

  17. Smith JJ, Putta S, Zhu W, Pao GM, Verma IM, Hunter T, Bryant SV, Gardiner DM, Harkins TT, Voss SR (2009) Genic regions of a large salamander genome contain long introns and novel genes. BMC Genomics 10:19. doi:10.1186/1471-2164-10-19

    Article  CAS  Google Scholar 

  18. Khattak S, Murawala P, Andreas H, Kappert V, Schuez M, Sandoval-Guzmán T, Crawford K, Tanaka EM (2014) Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc 9:529–540

    Article  CAS  Google Scholar 

  19. Humphrey RR, Fankhauser G (1957) The origin of spontaneous and experimental haploids in the Mexican axolotl (Siredon—or Ambystoma—Mexicanum). J Exp Zool 134:427–447

    Article  CAS  Google Scholar 

  20. Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141:707–714

    Article  CAS  Google Scholar 

  21. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig M. Crews Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Flowers, G.P., Crews, C.M. (2015). Generating and Identifying Axolotls with Targeted Mutations Using Cas9 RNA-Guided Nuclease. In: Kumar, A., Simon, A. (eds) Salamanders in Regeneration Research. Methods in Molecular Biology, vol 1290. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2495-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2495-0_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2494-3

  • Online ISBN: 978-1-4939-2495-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics