Skip to main content

Generation of Aneurogenic Larvae by Parabiosis of Salamander Embryos

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1290))

Abstract

Limb regeneration of salamanders is nerve dependent, and the removal of the nerves in early stages of limb regeneration severely curtails the proliferation of the blastemal cells and growth of the regenerate. The removal of the neural tube from a developing salamander embryo results in an aneurogenic larva and the aneurogenic limb (ANL) develops independently without innervation. Paradoxically, the limb in an ANL is capable of regeneration in a nerve-independent manner. Here, we describe a detailed method for the generation of ANL in the spotted salamander, Ambystoma maculatum, for regeneration studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8:552–565

    Article  CAS  Google Scholar 

  2. Takeo M, Chou WC, Sun Q, Lee W, Rabbani P, Loomis C, Taketo MM, Ito M (2013) Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature 499:228–232

    Article  CAS  Google Scholar 

  3. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158

    Article  CAS  Google Scholar 

  4. Buckley G, Metcalfe AD, Ferguson MW (2011) Peripheral nerve regeneration in the MRL/MpJ ear wound model. J Anat 218:163–172

    Article  Google Scholar 

  5. Buckley G, Wong J, Metcalfe AD, Ferguson MW (2012) Denervation affects regenerative responses in MRL/MpJ and repair in C57BL/6 ear wounds. J Anat 220:3–12

    Article  CAS  Google Scholar 

  6. Todd TJ (1823) On the process of reproduction of the members of the aquatic salamander. Q J Sci Lit Arts 16:84–96

    Google Scholar 

  7. Kumar A, Brockes JP (2012) Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci 35:691–699

    Article  CAS  Google Scholar 

  8. Singer M (1952) The influence of the nerve in regeneration of the amphibian extremity. Q Rev Biol 27:169–200

    Article  CAS  Google Scholar 

  9. Stocum DL (2011) The role of peripheral nerves in urodele limb regeneration. Eur J Neurosci 34:908–916

    Article  Google Scholar 

  10. Brockes JP, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 3:566–574

    Article  CAS  Google Scholar 

  11. Simon A, Tanaka EM (2013) Limb regeneration. Wiley Interdiscip Rev Dev Biol 2:291–300

    Article  Google Scholar 

  12. Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:174–187

    Article  CAS  Google Scholar 

  13. Lentz TL (1967) Fine structure of nerves in the regenerating limb of the newt Triturus. Am J Anat 121:647–669

    Article  CAS  Google Scholar 

  14. Salpeter MM (1965) Disposition of nerve fibers in the regenerating limb of the adult newt, Triturus. J Morphol 117:201–211

    Article  CAS  Google Scholar 

  15. Singer M (1949) The invasion of the epidermis of the regenerating forelimb of the urodele, Triturus, by nerve fibers. J Exp Zool 111:189–209

    Article  CAS  Google Scholar 

  16. Brockes JP (1984) Mitogenic growth factors and nerve dependence of limb regeneration. Science 225:1280–1287

    Article  CAS  Google Scholar 

  17. Singer M, Craven L (1948) The growth and morphogenesis of the regenerating forelimb of adult Triturus following denervation at various stages of development. J Exp Zool 108:279–308

    Article  CAS  Google Scholar 

  18. Gordon H, Brockes JP (1988) Appearance and regulation of an antigen associated with limb regeneration in Notophthalmus viridescens. J Exp Zool 247:232–243

    Article  CAS  Google Scholar 

  19. Mescher AL (1976) Effects on adult newt limb regeneration of partial and complete skin flaps over the amputation surface. J Exp Zool 195:117–128

    Article  CAS  Google Scholar 

  20. Singer M, Rzehak K, Maier CS (1967) The relation between the caliber of the axon and the trophic activity of nerves in limb regeneration. J Exp Zool 166:89–97

    Article  CAS  Google Scholar 

  21. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318:772–777

    Article  CAS  Google Scholar 

  22. Garza-Garcia A, Harris R, Esposito D, Gates PB, Driscoll PC (2009) Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration. PLoS One 4:e7123

    Article  Google Scholar 

  23. Garza-Garcia A, Driscoll PC, Brockes JP (2010) Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol 50:528–535

    Article  Google Scholar 

  24. Morais da Silva S, Gates PB, Brockes JP (2002) The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell 3:547–555

    Article  Google Scholar 

  25. Kumar A, Gates PB, Brockes JP (2007) Positional identity of adult stem cells in salamander limb regeneration. C R Biol 330:485–490

    Article  CAS  Google Scholar 

  26. Galis F, Wagner GP, Jockusch EL (2003) Why is limb regeneration possible in amphibians but not in reptiles, birds, and mammals? Evol Dev 5:208–220

    Article  Google Scholar 

  27. Harrison RG (1907) Experiments in transplanting limbs and their bearing upon the problems of the development of nerves. J Exp Zool 4:239–281

    Article  Google Scholar 

  28. Fekete DM, Brockes JP (1988) Evidence that the nerve controls molecular identity of progenitor cells for limb regeneration. Development 103:567–573

    CAS  Google Scholar 

  29. Yntema CL (1959) Blastema formation in sparsely innervated and aneurogenic forelimbs of ambystoma larvae. J Exp Zool 142:423–439

    Article  CAS  Google Scholar 

  30. Tassava RA, Olsen-Winner CL (2003) Responses to amputation of denervated ambystoma limbs containing aneurogenic limb grafts. J Exp Zool 297:64–79

    Article  Google Scholar 

  31. Thornton CS, Thornton MT (1970) Recuperation of regeneration in denervated limbs of ambystoma larvae. J Exp Zool 173:293–301

    Article  Google Scholar 

  32. Kumar A, Delgado JP, Gates PB, Neville G, Forge A, Brockes JP (2011) The aneurogenic limb identifies developmental cell interactions underlying vertebrate limb regeneration. Proc Natl Acad Sci U S A 108:13588–13593

    Article  CAS  Google Scholar 

  33. Hamburger VA (1966) A manual of experimental embryology. University of Chicago Press, Chicago, IL

    Google Scholar 

  34. Johnson LG (2001) Patterns & experiments in developmental biology. McGraw Hill, London

    Google Scholar 

  35. Hubel DH (1957) Tungsten Microelectrode for recording from single units. Science 125:549–550

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Jeremy Brockes for advice and support. Our work is funded by a Program Grant and MRC Research Professorship to Jeremy Brockes. JP Delgado is funded by Programa-Sostenibilidad 2013–2014, University of Antioquia, Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kumar, A., Delgado, J.P. (2015). Generation of Aneurogenic Larvae by Parabiosis of Salamander Embryos. In: Kumar, A., Simon, A. (eds) Salamanders in Regeneration Research. Methods in Molecular Biology, vol 1290. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2495-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2495-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2494-3

  • Online ISBN: 978-1-4939-2495-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics