Skip to main content

Scoring Functions for Fragment-Based Drug Discovery

  • Protocol
  • First Online:
Fragment-Based Methods in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1289))

Abstract

Fragment-based drug design represents a challenge for computational drug design because almost inevitably fragments will be weak binders to the biomolecular targets of a specific disease, and the performances of the scoring functions for weak binders are usually poorer than those for the stronger binders. This protocol describes how to predict the binding modes and binding affinities of fragments towards their binding partner with our refined AutoDock scoring function incorporating a quantum chemical charge model, namely, the restrained electrostatic potential (RESP) model. This scoring function was calibrated by robust regression analysis and has been demonstrated to perform well for general classes of protein–ligand interactions and for weak binders (with root-mean square of error of about 2.1 kcal/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P (2012) Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 11:873–886

    Article  CAS  PubMed  Google Scholar 

  2. Mashalidis EH, Sledz P, Lang S, Abell C (2013) A three-stage biophysical screening cascade for fragment-based drug discovery. Nat Protoc 8:2309–2324

    Article  CAS  PubMed  Google Scholar 

  3. Garcin ED, Arvai AS, Rosenfeld RJ, Kroeger MD, Crane BR, Andersson G, Andrews G, Hamley PJ, Mallinder PR, Nicholls DJ, St-Gallay SA, Tinker AC, Gensmantel NP, Mete A, Cheshire DR, Connolly S, Stuehr DJ, Aberg A, Wallace AV, Tainer JA, Getzoff ED (2008) Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat Chem Biol 4:700–707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lin JH, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124:5632–5633

    Article  CAS  PubMed  Google Scholar 

  5. Lin JH, Perryman AL, Schames JR, McCammon JA (2003) The relaxed complex method: accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers 68:47–62

    Article  CAS  PubMed  Google Scholar 

  6. Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22:693–705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lin JH (2011) Accommodating protein flexibility for structure-based drug design. Curr Top Med Chem 11:171–178

    Article  CAS  PubMed  Google Scholar 

  8. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  PubMed  Google Scholar 

  9. Wang JC, Lin JH, Chen CM, Perryman AL, Olson AJ (2011) Robust scoring functions for protein-ligand interactions with quantum chemical charge models. J Chem Inf Model 51:2528–2537

    Article  CAS  PubMed  Google Scholar 

  10. Wang JC, Lin JH (2013) Scoring functions for prediction of protein-ligand interactions. Curr Pharm Des 19:2174–2182

    Article  CAS  PubMed  Google Scholar 

  11. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  CAS  PubMed  Google Scholar 

  12. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35(Web Server issue):W522–W525

    Article  PubMed Central  PubMed  Google Scholar 

  14. Case TAD DA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Götz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 13. University of California, San Francisco

    Google Scholar 

  15. Marvin 6.1.0 (2013). ChemAxon (http://www.chemaxon.com)

  16. Frischmjt GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  17. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.C.W. is supported by the postdoctoral research program of Academia Sinica. Funding from the National Science Council of Taiwan and Research Center for Applied Sciences is greatly acknowledged. We also would like to thank the support from the National Center for High Performance Computing of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hsin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, JC., Lin, JH. (2015). Scoring Functions for Fragment-Based Drug Discovery. In: Klon, A. (eds) Fragment-Based Methods in Drug Discovery. Methods in Molecular Biology, vol 1289. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2486-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2486-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2485-1

  • Online ISBN: 978-1-4939-2486-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics