Skip to main content

Site Identification by Ligand Competitive Saturation (SILCS) Simulations for Fragment-Based Drug Design

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1289))

Abstract

Fragment-based drug design (FBDD) involves screening low molecular weight molecules (“fragments”) that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind nonoverlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy.

The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is “soaked” in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called “FragMaps” can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine “Grid Free Energies (GFEs),” which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Erlanson DA, McDowell RS, O’Brien T (2004) Fragment-based drug discovery. J Med Chem 47:3463–34682

    Article  CAS  PubMed  Google Scholar 

  2. Dill KA (1997) Additivity principles in biochemistry. J Biol Chem 272:701–704

    Article  CAS  PubMed  Google Scholar 

  3. Hennig M, Ruf A, Huber W (2012) Combining biophysical screening and X-ray crystallography for fragment-based drug discovery. Top Curr Chem 317:115–143

    Article  CAS  PubMed  Google Scholar 

  4. Erlanson DA (2012) Introduction to fragment-based drug discovery. Top Curr Chem 317:1–32

    Article  CAS  PubMed  Google Scholar 

  5. Orita M, Warizaya M, Amano Y, Ohno K, Niimi T (2009) Advances in fragment-based drug discovery platforms. Expert Opin Drug Discov 4:1125–1144

    Article  CAS  PubMed  Google Scholar 

  6. Sancineto L, Massari S, Iraci N, Tabarrini O (2013) From small to powerful: the fragments universe and its “chem-appeal”. Curr Med Chem 20:1355–1381

    Article  CAS  PubMed  Google Scholar 

  7. Miranker A, Karplus M (1991) Functionality maps of binding-sites – a multiple copy simultaneous search method. Proteins Struct Funct Genet 11:29–34

    Article  CAS  PubMed  Google Scholar 

  8. Majeux N, Scarsi M, Apostolakis J, Ehrhardt C, Caflisch A (1999) Exhaustive docking of molecular fragments with electrostatic solvation. Proteins Struct Funct Genet 37:88–105

    Article  CAS  PubMed  Google Scholar 

  9. Landon MR, Lancia DR Jr, Yu J, Thiel SC, Vajda S (2007) Identification of hot spots within druggable binding regions by computational solvent mapping of proteins. J Med Chem 50:1231–1240

    Article  CAS  PubMed  Google Scholar 

  10. Clark M, Guarnieri F, Shkurko I, Wiseman J (2006) Grand canonical Monte Carlo simulation of ligand-protein binding. J Chem Inf Model 46:231–242

    Article  CAS  PubMed  Google Scholar 

  11. Carlson HA, Masukawa KM, Rubins K, Bushman FD, Jorgensen WL, Lins RD, Briggs JM, McCammon JA (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100–21014

    Article  CAS  PubMed  Google Scholar 

  12. Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26:531–568

    Article  CAS  PubMed  Google Scholar 

  13. Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373

    Article  CAS  PubMed  Google Scholar 

  14. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: current status and future challenges. Proteins Struct Funct Bioinf 65:15–26

    Article  CAS  Google Scholar 

  15. Zhong S, Chen X, Zhu X, Dziegielewska B, Bachman KE, Ellenberger T, Ballin JD, Wilson GM, Tomkinson AE, MacKerell AD (2008) Identification and validation of human DNA ligase inhibitors using computer-aided drug design. J Med Chem 51:4553–4562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51:3661–3680

    Article  CAS  PubMed  Google Scholar 

  18. Majeux N, Scarsi M, Caflisch A (2001) Efficient electrostatic solvation model for protein-fragment docking. Proteins Struct Funct Genet 42:256–268

    Article  CAS  PubMed  Google Scholar 

  19. Gozalbes R, Carbajo RJ, Pineda-Lucena A (2010) Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery. Curr Med Chem 17:1769–1794

    Article  CAS  PubMed  Google Scholar 

  20. Rabal O, Urbano-Cuadrado M, Oyarzabal J (2011) Computational medicinal chemistry in fragment-based drug discovery: what, how and when. Future Med Chem 3:95–134

    Article  CAS  PubMed  Google Scholar 

  21. Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(Suppl 1):S7–S26

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Guvench O, MacKerell AD Jr (2009) Computational evaluation of protein-small molecule binding. Curr Opin Struct Biol 19:56–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Huang SY, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12:12899–12908

    Article  CAS  PubMed  Google Scholar 

  24. Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  26. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  27. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinf 65:712–725

    Article  CAS  Google Scholar 

  28. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  29. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  30. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  31. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD Jr (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 8:3257–3273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Guvench O, MacKerell AD Jr (2008) Comparison of protein force fields for molecular dynamics simulations. Methods Mol Biol 443:63–88

    Article  CAS  PubMed  Google Scholar 

  34. Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107:9535–9551

    Article  CAS  Google Scholar 

  35. Jayachandran G, Shirts MR, Park S, Pande VS (2006) Parallelized-over-parts computation of absolute binding free energy with docking and molecular dynamics. J Chem Phys 125:084901

    Article  PubMed  Google Scholar 

  36. Jiao D, Golubkov PA, Darden TA, Ren P (2008) Calculation of protein-ligand binding free energy by using a polarizable potential. Proc Natl Acad Sci U S A 105:6290–6295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lee MS, Olson MA (2006) Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophys J 90:864–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lee MS, Olson MA (2008) Calculation of absolute ligand binding free energy to a ribosome-targeting protein as a function of solvent model. J Phys Chem B 112:13411–13417

    Article  CAS  PubMed  Google Scholar 

  39. Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA (2007) Predicting absolute ligand binding free energies to a simple model site. J Mol Biol 371:1118–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J Phys Chem B 111:13052–13063

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Deng Y, Roux B (2006) Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J 91:2798–2814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Woo HJ, Roux B (2005) Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci U S A 102:6825–6830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42

    Article  CAS  PubMed  Google Scholar 

  44. Guvench O, MacKerell AD Jr (2009) Computational fragment-based binding site identification by ligand competitive saturation. PLoS Comput Biol 5:e1000435

    Article  PubMed Central  PubMed  Google Scholar 

  45. Raman EP, Yu W, Lakkaraju SK, MacKerell AD Jr (2013) Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. J Chem Inf Model 53:3384–3398

    Google Scholar 

  46. Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci U S A 96:9997–10002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431

    Article  PubMed  Google Scholar 

  48. Spyrakis F, BidonChanal A, Barril X, Luque FJ (2011) Protein flexibility and ligand recognition: challenges for molecular modeling. Curr Top Med Chem 11:192–210

    Article  CAS  PubMed  Google Scholar 

  49. Seco J, Luque FJ, Barril X (2009) Binding site detection and druggability index from first principles. J Med Chem 52:2363–2371

    Article  CAS  PubMed  Google Scholar 

  50. Yang C-Y, Wang S (2011) Hydrophobic binding hot spots of Bcl-xL protein‚ protein interfaces by cosolvent molecular dynamics simulation. ACS Med Chem Lett 2:280–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Lexa KW, Carlson HA (2011) Full protein flexibility is essential for proper hot-spot mapping. J Am Chem Soc 133:200–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Tan YS, Sledz P, Lang S, Stubbs CJ, Spring DR, Abell C, Best RB (2012) Using ligand-mapping simulations to design a ligand selectively targeting a cryptic surface pocket of polo-like kinase 1. Angew Chem Int Ed Engl 51:10078–10081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bakan A, Nevins N, Lakdawala AS, Bahar I (2012) Druggability assessment of allosteric proteins by dynamics simulations in the presence of probe molecules. J Chem Theory Comput 8:2435–4247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Foster TJ, Mackerell AD Jr, Guvench O (2012) Balancing target flexibility and target denaturation in computational fragment-based inhibitor discovery. J Comput Chem 33:1880–1891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Boczko EM, Brooks CL III (1995) First-principles calculation of the folding free energy of a three-helix bundle protein. Science 269:393–396

    Article  CAS  PubMed  Google Scholar 

  56. Sheinerman FB, Brooks CL III (1998) Calculations on folding of segment B1 of streptococcal protein G. J Mol Biol 278:439–456

    Article  CAS  PubMed  Google Scholar 

  57. Shea JE, Brooks CL III (2001) From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu Rev Phys Chem 52:499–535

    Article  CAS  PubMed  Google Scholar 

  58. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  59. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61

    CAS  PubMed  Google Scholar 

  60. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Bernard D, Coop A, MacKerell AD Jr (2007) Quantitative conformationally sampled pharmacophore for delta opioid ligands: reevaluation of hydrophobic moieties essential for biological activity. J Med Chem 50:1799–1809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Raman EP, Yu W, Guvench O, MacKerell AD Jr (2011) Reproducing crystal binding modes of ligand functional groups using site-identification by ligand competitive saturation (SILCS) simulations. J Chem Inf Model 51:877–896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Baum B, Muley L, Heine A, Smolinski M, Hangauer D, Klebe G (2009) Think twice: understanding the high potency of bis(phenyl)methane inhibitors of thrombin. J Mol Biol 391:552–564

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NIH AI080968, CA107331, and R15GM099022; NSF XSEDE TG-MCB120007; Samuel Waxman Cancer Research Foundation; The University of Maryland Computer-Aided Drug Design Center; and University of New England start-up funds.

Conflict of interest: O.G. and A.D.M. are founders of SilcsBio LLC and are currently Manager and Chief Scientific Officer of the same, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olgun Guvench .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Faller, C.E., Raman, E.P., MacKerell, A.D., Guvench, O. (2015). Site Identification by Ligand Competitive Saturation (SILCS) Simulations for Fragment-Based Drug Design. In: Klon, A. (eds) Fragment-Based Methods in Drug Discovery. Methods in Molecular Biology, vol 1289. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2486-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2486-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2485-1

  • Online ISBN: 978-1-4939-2486-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics