Skip to main content

Binding Site Druggability Assessment in Fragment-Based Drug Design

  • Protocol
  • First Online:
Fragment-Based Methods in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1289))

Abstract

Target druggability refers to the propensity that a particular target is amenable to bind high-affinity drug-like molecules. A robust yet accurate computational assessment of target druggability would greatly benefit the fields of chemical genomics and drug discovery. Here, we illustrate a structure-based computational protocol to quantitatively assess the target binding-site druggability via in silico screening a fragment-like compound library. In particular, we provide guidelines, suggestions, and critical thoughts on different aspects of this computational protocol, including: construction of fragment library, preparation of target structure, in silico fragment screening, and analysis of druggability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fauman EB, Rai BK, Huang ES (2011) Structure-based druggability assessment—identifying suitable targets for small molecule therapeutics. Curr Opin Chem Biol 15:463–468

    Article  CAS  PubMed  Google Scholar 

  2. Brady GP Jr, Stouten PF (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401

    Article  CAS  PubMed  Google Scholar 

  3. Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15(359–363):389

    Google Scholar 

  4. Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13(323–330):307–328

    Google Scholar 

  5. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Soga S, Shirai H, Kobori M, Hirayama N (2007) Use of amino acid composition to predict ligand-binding sites. J Chem Inf Model 47:400–406

    Article  CAS  PubMed  Google Scholar 

  7. Stuart AC, Ilyin VA, Sali A (2002) LigBase: a database of families of aligned ligand binding sites in known protein sequences and structures. Bioinformatics 18:200–201

    Article  CAS  PubMed  Google Scholar 

  8. An J, Totrov M, Abagyan R (2004) Comprehensive identification of “druggable” protein ligand binding sites. Genome Inform 15:31–41

    CAS  PubMed  Google Scholar 

  9. Glaser F, Morris RJ, Najmanovich RJ, Laskowski RA, Thornton JM (2006) A method for localizing ligand binding pockets in protein structures. Proteins 62:479–488

    Article  CAS  PubMed  Google Scholar 

  10. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  PubMed  Google Scholar 

  11. Blundell TL, Sibanda BL, Montalvao RW, Brewerton S, Chelliah V, Worth CL, Harmer NJ, Davies O, Burke D (2006) Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philos Trans R Soc Lond B Biol Sci 361:413–423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fauman EB, Hopkins AL, Groom CR (2003) Structural bioinformatics in drug discovery. Methods Biochem Anal 44:477–497

    CAS  PubMed  Google Scholar 

  13. Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25:71–75

    Article  PubMed  Google Scholar 

  14. Sheridan RP, Maiorov VN, Holloway MK, Cornell WD, Gao YD (2010) Drug-like density: a method of quantifying the “bindability” of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank. J Chem Inf Model 50:2029–2040

    Article  CAS  PubMed  Google Scholar 

  15. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389

    Article  CAS  PubMed  Google Scholar 

  16. Nayal M, Honig B (2006) On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 63:892–906

    Article  CAS  PubMed  Google Scholar 

  17. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48:2518–2525

    Article  CAS  PubMed  Google Scholar 

  18. Huang N, Jacobson MP (2010) Binding-site assessment by virtual fragment screening. PLoS One 5:e10109

    Article  PubMed Central  PubMed  Google Scholar 

  19. Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lorber DM, Shoichet BK (2005) Hierarchical docking of databases of multiple ligand conformations. Curr Top Med Chem 5:739–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wei BQ, Baase WA, Weaver LH, Matthews BW, Shoichet BK (2002) A model binding site for testing scoring functions in molecular docking. J Mol Biol 322:339–355

    Article  CAS  PubMed  Google Scholar 

  23. Jacobson MP, Kaminski GA, Friesner RA, Rapp CS (2002) Force field validation using protein side chain prediction. J Phys Chem B 106:11673–11680

    Article  CAS  Google Scholar 

  24. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367

    Article  CAS  PubMed  Google Scholar 

  25. Zhu K, Shirts MR, Friesner RA, Jacobson MP (2007) Multiscale optimization of a truncated newton minimization algorithm and application to proteins and protein-ligand complexes. J Chem Theory Comput 3:640–648

    Article  CAS  Google Scholar 

  26. Ihlenfeldt WD, Takahashi Y, Abe S, Sasaki S (1994) Computation and management of chemical properties in CACTVS: an extensible networked approach toward modularity and flexibility. J Chem Inf Comput Sci 34:109–116

    Article  CAS  Google Scholar 

  27. Voigt JH, Bienfait B, Wang S, Nicklaus MC (2001) Comparison of the NCI open database with seven large chemical structural databases. J Chem Inf Comput Sci 41:702–712

    Article  CAS  PubMed  Google Scholar 

  28. Huang N, Kalyanaraman C, Bernacki K, Jacobson MP (2006) Molecular mechanics methods for predicting protein-ligand binding. Phys Chem Chem Phys 8(44):5166–5177

    Article  CAS  PubMed  Google Scholar 

  29. Huang N, Kalyanaraman C, Irwin JJ, Jacobson MP (2006) Physics-based scoring of protein-ligand complexes: enrichment of known inhibitors in large-scale virtual screening. J Chem Inf Model 46:243–253

    Article  CAS  PubMed  Google Scholar 

  30. Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709–713

    Article  CAS  PubMed  Google Scholar 

  31. Ferrini TE, Huang CC, Jarvis LE, Roberts L (1988) The MIDAS display system. J Mol Graph 6:13–27

    Article  Google Scholar 

  32. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  PubMed  Google Scholar 

  33. Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comput Chem 13:505–524

    Article  CAS  Google Scholar 

  34. Nicholls A, Honig B (1991) A raid finite-difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J Comput Chem 12:435–445

    Article  CAS  Google Scholar 

  35. Mysinger MM, Shoichet BK (2010) Rapid context-dependent ligand desolvation in molecular docking. J Chem Inf Model 50:1561–1573

    Article  CAS  PubMed  Google Scholar 

  36. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  37. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  38. Gallicchio E, Zhang LY, Levy RM (2002) The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators. J Comput Chem 23:517–529

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh A, Rapp CS, Friesner RA (1998) Generalized born model based on a surface integral formulation. J Phys Chem B 102:10983–10990

    Article  CAS  Google Scholar 

  40. Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci U S A 96:9997–10002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553

    Article  CAS  PubMed  Google Scholar 

  42. Peng SM, Zhou Y, Huang N (2013) Improving the accuracy of pose prediction in molecular docking via structural filtering and conformational clustering. Chin Chem Lett 24:1001–1004

    Article  CAS  Google Scholar 

  43. Zhou Z, Madura JD (2004) CoMFA 3D-QSAR analysis of HIV-1 RT non nucleoside inhibitors, TIBO derivatives based on docking conformation and alignment. J Chem Inf Comput Sci 44:2167–2178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The Chinese Ministry of Science and Technology “973” Grant 2011CB812402 (to N.H.) is acknowledged for financial support, Shoichet Lab at UCSF for the DOCK3.5.54 program and Jacobson Lab at UCSF for PLOP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhou, Y., Huang, N. (2015). Binding Site Druggability Assessment in Fragment-Based Drug Design. In: Klon, A. (eds) Fragment-Based Methods in Drug Discovery. Methods in Molecular Biology, vol 1289. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2486-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2486-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2485-1

  • Online ISBN: 978-1-4939-2486-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics