Skip to main content

Protein Binding Site Analysis for Drug Discovery Using a Computational Fragment-Based Method

  • Protocol
  • First Online:
Fragment-Based Methods in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1289))

Abstract

One of the most powerful tools for designing drug molecules is an understanding of the target protein’s binding site. Identifying key amino acids and understanding the electronic, steric, and solvation properties of the site enables the design of potent ligands. Of equal importance for the success of a drug discovery program is the evaluation of binding site druggability. Determining, a priori, if a particular binding site has the appropriate character to bind drug-like ligands saves research time and money.

While there are a variety of experimental and computational techniques to identify and characterize binding sites, the focus of this chapter is on Binding Site Analysis (BSA) using virtual fragment simulations. The methodology of the technique is described, along with examples of successful application to drug discovery programs. BSA both indicates if a protein is a viable target for drug discovery and provides a roadmap for designing ligands. Using a computational fragment-based method is a effective means of understanding of a binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  PubMed  Google Scholar 

  2. Vajda S, Guarnieri F (2006) Characterization of protein–ligand interaction sites using experimental and computational methods. Curr Opin Drug Discov Devel 9:354–362

    CAS  PubMed  Google Scholar 

  3. Henrich S, Salo-Ahen OMH, Huang B et al (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 23:209–219

    CAS  PubMed  Google Scholar 

  4. Perot S, Sperandio O, Miteva MA et al (2010) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15:656–667

    Article  CAS  PubMed  Google Scholar 

  5. Nisius B, Sha F, Gohlke H (2012) Structure-based computational analysis of protein binding sites for function and druggability prediction. J Biotechnol 159:123–134

    Article  CAS  PubMed  Google Scholar 

  6. Schmidtke P, Souaille C, Estienne F et al (2010) Large-scale comparison of four binding site detection algorithms. J Chem Inf Model 50:2191–2200

    Article  CAS  PubMed  Google Scholar 

  7. Labute P, Santavy M (2007) Locating binding sites in protein structures. J Chem Comput Group. http://www.chemcomp.com/journal/sitefind.htm

  8. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168

    Article  PubMed Central  PubMed  Google Scholar 

  9. Halgren T (2007) New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des 2:146–148

    Article  Google Scholar 

  10. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389

    Article  CAS  PubMed  Google Scholar 

  11. An J, Totrov M, Abagyan R (2005) Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol Cell Proteomics 6:752–761

    Article  Google Scholar 

  12. Guarnieri F (2004) U.S. Patent No. 6,735,530. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  13. Moore WR (2005) Maximizing discovery efficiency with a computationally driven fragment approach. Curr Opin Drug Disc Devel 8: 355–364

    CAS  Google Scholar 

  14. Ringe D (1995) What makes a binding site a binding site? Curr Opin Struct Biol 5: 825–829

    Article  CAS  PubMed  Google Scholar 

  15. Mattos C, Ringe D (1996) Locating and characterizing binding sites on proteins. Nat Biotechnol 14:595–599

    Article  CAS  PubMed  Google Scholar 

  16. Allen KN, Bellamacina CR, Ding X et al (1996) An experimental approach to mapping the binding surfaces of crystalline proteins. J Phys Chem 100:2605–2611

    Google Scholar 

  17. Guarnieri F, Mezei M (1996) Simulated annealing of chemical potential: a general procedure for locating bound waters. Application to the study of the differential hydration propensities of the major and minor grooves of DNA. J Am Chem Soc 118:8493–8494

    Article  CAS  Google Scholar 

  18. Clark M, Guarnieri F, Shkurko I et al (2006) Grand canonical Monte Carlo simulation of ligand-protein binding. J Chem Inf Model 46:231–242

    Article  CAS  PubMed  Google Scholar 

  19. Clark M, Meshkat S, Wiseman J (2009) Grand canonical free-energy calculation of protein-ligand binding. J Chem Inf Model 49:934–943

    Article  CAS  PubMed  Google Scholar 

  20. Konteatis ZD (2010) In silico fragment-based drug design. Expert Opin Drug Discov 5:1047–1065

    Article  CAS  PubMed  Google Scholar 

  21. Konteatis ZD, Klon AE, Zou J et al (2011) Computational approach to de novo discovery of fragment binding for novel protein states. Methods Enzymol 493:357–380

    Article  CAS  PubMed  Google Scholar 

  22. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    Article  CAS  PubMed  Google Scholar 

  23. Grimme D, Gonzalez-Ruiz D, Gohlke H (2012) Computational strategies and challenges for targeting protein–protein interactions with small molecules. Physico-chemical and Computational Approaches to Drug Discovery. Royal Society of Chemistry, London, UK

    Google Scholar 

  24. Klon AE, Konteatis Z, Meshkat SN et al (2011) Fragment and protein simulation methods in fragment based drug design. Drug Dev Res 72:130–137

    Article  CAS  Google Scholar 

  25. Gupta A, Gupta AK, Seshari K (2009) Structural models in the assessment of protein druggability based on HTS data. J Comput Aided Mol Des 23:583–592

    Article  CAS  PubMed  Google Scholar 

  26. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48:2518–2525

    Article  CAS  PubMed  Google Scholar 

  27. Huang N, Jacobsen MP (2010) Binding-site assessment by virtual fragment screening. PLoS One 5:e10109

    Article  PubMed Central  PubMed  Google Scholar 

  28. Nayal M, Honig B (2006) On the nature of cavities on protein surfaces: application to the identification of drug‐binding sites. Proteins 63:892–906

    Article  CAS  PubMed  Google Scholar 

  29. Weisel M, Proschak E, Kriegl JM et al (2009) Form follows function: shape analysis of protein cavities for receptor-based drug design. Proteomics 9:451–459

    Article  CAS  PubMed  Google Scholar 

  30. Krasowski A, Muthas D, Sarkar A et al (2011) DrugPred: a structure-based approach to predict protein druggability developed using an extensive nonredundant data set. J Chem Inf Model 51:2829–2842

    Article  CAS  PubMed  Google Scholar 

  31. Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53:5858–5867

    Article  CAS  PubMed  Google Scholar 

  32. Clark M, Meshkat S, Talbot G et al (2009) Developing technologies in biodefense research: computational drug design. Drug Dev Res 70:279–287

    Article  CAS  Google Scholar 

  33. Moffett K, Konteatis Z, Nguyen D et al (2011) Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD). Bioorg Med Chem Lett 21:7155–7165

    Article  CAS  PubMed  Google Scholar 

  34. Ludington JL, Fujimoto TT, Hollinger FP (2004) Determining partial atomic charges for fragments used in de novo drug design. 228th ACS national meeting, Philadelphia, PA (Poster)

    Google Scholar 

Download references

Acknowledgments

The author thanks the following colleagues for their contributions to the Locus technology and this approach to BSA: F. Guarnieri, Z. Konteatis, T. Fujimoto, F. Hollinger, M. Clark, J. Wiseman, A. Klon, J. Zou, S. Meshkat, G. Talbot, K. Milligan, and W. Chiang. The author also thanks D. Ludington and M. Ringuette for their editing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Ludington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ludington, J.L. (2015). Protein Binding Site Analysis for Drug Discovery Using a Computational Fragment-Based Method. In: Klon, A. (eds) Fragment-Based Methods in Drug Discovery. Methods in Molecular Biology, vol 1289. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2486-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2486-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2485-1

  • Online ISBN: 978-1-4939-2486-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics