Skip to main content

Imaging Local Deposition of Newly Synthesized Histones in UVC-Damaged Chromatin

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1288))

Abstract

DNA damage not only jeopardizes genome integrity but also challenges the well-organized association of DNA with histone proteins into chromatin, which is key for regulating gene expression and cell functions. The extent to which the original chromatin structure is altered after repair of DNA lesions is thus a critical issue. Dissecting histone dynamics at sites of DNA damage has provided mechanistic insights into chromatin plasticity in response to genotoxic stress. Here, we present an experimental protocol for visualizing the deposition of newly synthesized histone H3 variants at sites of UVC damage in human cells that couples SNAP-tag based labeling of new histones with local UVC irradiation of cells through micropore filters.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kornberg RD (1977) Structure of chromatin. Annu Rev Biochem 46:931–954

    Article  CAS  PubMed  Google Scholar 

  2. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275

    Article  CAS  PubMed  Google Scholar 

  4. Smerdon MJ (1991) DNA repair and the role of chromatin structure. Curr Opin Cell Biol 3:422–428

    Article  CAS  PubMed  Google Scholar 

  5. Soria G, Polo SE, Almouzni G (2012) Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 46:722–734

    Article  CAS  PubMed  Google Scholar 

  6. De Koning L, Corpet A, Haber JE et al (2007) Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 14:997–1007

    Article  PubMed  Google Scholar 

  7. Burgess RJ, Zhang Z (2013) Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 20:14–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Smerdon MJ, Lieberman MW (1978) Nucleosome rearrangement in human chromatin during UV-induced DNA-repair synthesis. Proc Natl Acad Sci 75:4238–4241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Smerdon MJ, Lieberman MW (1980) Distribution within chromatin of deoxyribonucleic acid repair synthesis occurring at different times after ultraviolet radiation. Biochemistry 19:2992–3000

    Article  CAS  PubMed  Google Scholar 

  10. Gérard A, Polo SE, Roche D et al (2006) Methods for studying chromatin assembly coupled to DNA repair. Methods Enzymol 409:358–374

    Article  PubMed  Google Scholar 

  11. Adam S, Polo SE (2012) Chromatin dynamics during nucleotide excision repair: histones on the move. Int J Mol Sci 13:11895–11911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Dinant C, de Jager M, Essers J et al (2007) Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. J Cell Sci 120:2731–2740

    Article  CAS  PubMed  Google Scholar 

  13. Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25:409–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Moné MJ, Volker M, Nikaido O et al (2001) Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep 2:1013–1017

    Article  PubMed Central  PubMed  Google Scholar 

  15. Katsumi S, Kobayashi N, Imoto K et al (2001) In situ visualization of ultraviolet-light-induced DNA damage repair in locally irradiated human fibroblasts. J Invest Dermatol 117:1156–1161

    Article  CAS  PubMed  Google Scholar 

  16. Nouspikel T (2009) DNA repair in mammalian cells. Cell Mol Life Sci 66:994–1009

    Article  CAS  PubMed  Google Scholar 

  17. Polo SE, Roche D, Almouzni G (2006) New histone incorporation marks sites of UV repair in human cells. Cell 127:481–493

    Article  CAS  PubMed  Google Scholar 

  18. Adam S, Polo SE, Almouzni G (2013) Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 155:94–106

    Article  CAS  PubMed  Google Scholar 

  19. Loyola A, Bonaldi T, Roche D et al (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24:309–316

    Article  CAS  PubMed  Google Scholar 

  20. Szenker E, Ray-Gallet D, Almouzni G (2011) The double face of the histone variant H3.3. Cell Res 21:421–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jansen LET, Black BE, Foltz DR et al (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bodor D, Rodríguez M, Moreno N (2012) Analysis of protein turnover by quantitative SNAP‐based pulse‐chase imaging. Curr Protoc Cell Biol Chapter 8, Unit 8.8.

    Google Scholar 

  23. Dunleavy EM, Almouzni G, Karpen GH (2011) H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase. Nucleus 2:146–157

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ray-Gallet D, Woolfe A, Vassias I et al (2011) Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for h3.3 to maintain chromatin integrity. Mol Cell 44:928–941

    Google Scholar 

  25. Corpet A, Olbrich T, Gwerder M et al (2014) Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization. Cell Cycle 13:249–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  CAS  PubMed  Google Scholar 

  27. Keppler A, Pick H, Arrivoli C et al (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci 101:9955–9959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dominique Ray-Gallet for critical reading of the manuscript. Research in S.E.P. group is supported by the European Research Council (ERC starting grant ERC-2013-StG-336427 “EpIn”), the French National Research Agency (ANR-12-JSV6-0002-01), the “Who am I?” laboratory of excellence (ANR-11-LABX-0071) funded by the French Government through its “Investments for the Future” program (ANR-11-IDEX-0005-01), EDF Radiobiology program RB 2014-01 and the Foundation ARC. S.A. is recipient of a PhD fellowship from University Pierre and Marie Curie and La Ligue contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie E. Polo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Adam, S., Dabin, J., Bai, SK., Polo, S.E. (2015). Imaging Local Deposition of Newly Synthesized Histones in UVC-Damaged Chromatin. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 1288. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2474-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2474-5_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2473-8

  • Online ISBN: 978-1-4939-2474-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics