Skip to main content

Tol2-Mediated Transgenesis and Its Application to Electroporation

  • Protocol
  • First Online:
Electroporation Methods in Neuroscience

Part of the book series: Neuromethods ((NM,volume 102))

  • 889 Accesses

Abstract

The Tol2 element is an active transposon that was found from the genome of the Japanese medaka fish. Since the Tol2 transposition system is active in any vertebrate cells so far tested, it has been applied to germ-line transgenesis in various model animals including fish, frog, chicken, and mouse, and also gene transfer to culture cells. Recently, since the Tol2 system can enhance integration of exogenous DNAs into the genome, it has been successfully applied to transgene delivery to somatic cells in chicken and mouse embryos by means of in ovo and in utero electroporation, respectively, providing novel approaches to study cell differentiation and cell lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivics Z, Hackett PB, Plasterk RH, Izsvák Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510

    Article  CAS  PubMed  Google Scholar 

  2. Raz E, van Luenen HG, Schaerringer B, Plasterk RH, Driever W (1998) Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr Biol 8(2):82–88

    Article  CAS  PubMed  Google Scholar 

  3. Fadool JM, Hartl DL, Dowling JE (1998) Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proc Natl Acad Sci U S A 95(9):5182–5186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H (1996) Transposable element in fish. Nature 383(6595):30

    Article  CAS  PubMed  Google Scholar 

  5. Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66(3):465–471

    Article  CAS  PubMed  Google Scholar 

  6. Kawakami K, Shima A (1999) Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene 240(1):239–244

    Article  CAS  PubMed  Google Scholar 

  7. Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97(21):11403–11408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Urasaki A, Morvan G, Kawakami K (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174(2):639–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Suster ML, Sumiyama K, Kawakami K (2009) Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10:477

    Article  PubMed Central  PubMed  Google Scholar 

  10. Stuart GW, McMurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103(2):403–412

    CAS  PubMed  Google Scholar 

  11. Kawakami K et al (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7(1):133–144

    Article  CAS  PubMed  Google Scholar 

  12. Kawakami K, Imanaka K, Itoh M, Taira M (2004) Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis. Gene 338(1):93–98

    Article  CAS  PubMed  Google Scholar 

  13. Hamlet MR et al (2006) Tol2 transposon-mediated transgenesis in Xenopus tropicalis. Genesis 44(9):438–445

    Article  PubMed  Google Scholar 

  14. Sumiyama K, Kawakami K, Yagita K (2010) A simple and highly efficient transgenesis method in mice with the Tol2 transposon system and cytoplasmic microinjection. Genomics 95(5):306–311

    Article  CAS  PubMed  Google Scholar 

  15. Fujimura K, Kocher TD (2011) Tol2-mediated transgenesis in tilapia (Oreochromis niloticus). Aquaculture 319(3-4):342–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Valenzano DR, Sharp S, Brunet A (2011) Transposon-mediated transgenesis in the short-lived African Killifish Nothobranchius furzeri, a vertebrate model for aging. G3 (Bethesda) 1(7):531–538

    Article  CAS  Google Scholar 

  17. Juntti SA, Hu CK, Fernald RD (2013) Tol2-mediated generation of a transgenic haplochromine cichlid, Astatotilapia burtoni. PLoS One 8(10):e77647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Macdonald J et al (2012) Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci U S A 109(23):E1466–E1472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Urasaki A, Mito T, Noji S, Ueda R, Kawakami K (2008) Transposition of the vertebrate Tol2 transposable element in Drosophila melanogaster. Gene 425(1-2):64–68

    Article  CAS  PubMed  Google Scholar 

  20. Kawakami K, Noda T (2004) Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics 166(2):895–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Grabundzija I et al (2010) Comparative analysis of transposable element vector systems in human cells. Mol Ther 18(6):1200–1209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yagita K, Yamanaka I, Emoto N, Kawakami K, Shimada S (2010) Real-time monitoring of circadian clock oscillations in primary cultures of mammalian cells using Tol2 transposon-mediated gene transfer strategy. BMC Biotechnol 10:3

    Article  PubMed Central  PubMed  Google Scholar 

  23. Yagita K et al (2010) Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc Natl Acad Sci U S A 107(8):3846–3851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Oka M, Moriyama T, Asally M, Kawakami K, Yoneda Y (2013) Differential role for transcription factor Oct4 nucleocytoplasmic dynamics in somatic cell reprogramming and self-renewal of embryonic stem cells. J Biol Chem 288(21):15085–15097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hikichi T et al (2013) Transcription factors interfering with dedifferentiation induce cell type-specific transcriptional profiles. Proc Natl Acad Sci U S A 110(16):6412–6417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sato Y et al (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305:616–624

    Article  CAS  PubMed  Google Scholar 

  27. Tanabe K et al (2006) Cadherin is required for dendritic morphogenesis and synaptic terminal organization of retinal horizontal cells. Development 133(20):4085–4096

    Article  CAS  PubMed  Google Scholar 

  28. Freeman S, Chrysostomou E, Kawakami K, Takahashi Y, Daudet N (2012) Tol2-mediated gene transfer and in ovo electroporation of the otic placode: a powerful and versatile approach for investigating embryonic development and regeneration of the chicken inner ear. Methods Mol Biol 916:127–139

    Article  CAS  PubMed  Google Scholar 

  29. Wang H et al (2011) Stable, conditional, and muscle-fiber-specific expression of electroporated transgenes in chick limb muscle cells. Dev Dyn 240(5):1223–1232

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida A et al (2010) Simultaneous expression of different transgenes in neurons and glia by combining in utero electroporation with the Tol2 transposon-mediated gene transfer system. Genes Cells 15(5):501–512

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Kita Y, Kawakami K, Takahashi Y, Murakami F (2013) Development of cerebellar neurons and glias revealed by in utero electroporation: Golgi-like labeling of cerebellar neurons and glias. PLoS One 8(7):e70091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Loulier K et al (2014) Multiplex cell and lineage tracking with combinatorial labels. Neuron 81(3):505–520

    Article  CAS  PubMed  Google Scholar 

  33. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Kawakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kawakami, K. (2015). Tol2-Mediated Transgenesis and Its Application to Electroporation. In: Saito, T. (eds) Electroporation Methods in Neuroscience. Neuromethods, vol 102. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2459-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2459-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2458-5

  • Online ISBN: 978-1-4939-2459-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics