Skip to main content

Simplifying Transgene Locus Structure Through Cre-lox Recombination

  • Protocol
  • First Online:
Plant Gene Silencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1287))

Abstract

Transgene silencing is often associated with multicopy integrations, which occur frequently during plant transformation. Transgene expression can be restored in a number of multicopy loci by converting them to single copy. This chapter describes a plant transformation protocol based on use of the Cre-lox system, which allows conversion of a multicopy transgene locus into single copy. The strategy is based on designing a transformation vector with lox sites, developing transgenic lines, and introducing Cre activity to initiate Cre-lox recombination, which leads to the simplification of a multicopy locus to a single- or low-copy state. This method is compatible with both gene gun and Agrobacterium-mediated gene delivery and should be particularly useful for crops that are difficult to transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birch RG (1997) Plant transformation: problems and strategies for practical application. Ann Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  Google Scholar 

  2. Kohli A, Leech M, Vain P et al (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci U S A 95:7203–7208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Day CD, Lee E, Kobayashi J et al (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagaya S, Kato K, Ninomiya Y et al (2005) Expression of randomly integrated single complete copy transgenes does not vary in Arabidopsis thaliana. Plant Cell Physiol 46:438–444

    Article  CAS  PubMed  Google Scholar 

  5. Chawla R, Ariza-Nieto M, Wilson AJ et al (2006) Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnol J 4:209–218

    Article  CAS  PubMed  Google Scholar 

  6. Nandy S, Srivastava V (2012) Marker-free site-specific gene integration in rice based on the use of two recombination systems. Plant Biotechnol J 10:904–912

    Article  CAS  PubMed  Google Scholar 

  7. Frame BR, Zhang H, Cocciolone SM et al (2000) Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol-Plant 36:21–29

    Article  Google Scholar 

  8. Jones HD (2004) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  Google Scholar 

  9. Paz M, Martinez JC, Kalvig A et al (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213

    Article  CAS  PubMed  Google Scholar 

  10. Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629–637

    Article  CAS  PubMed  Google Scholar 

  11. De Paters S, Pinas JE, Hooykaas PJ et al (2013) ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 11:510–515

    Article  Google Scholar 

  12. Ainley WM, Sastry-Dent L, Welter ME et al (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11:1126–1134

    Article  CAS  PubMed  Google Scholar 

  13. Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci U S A 96:11117–11121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Srivastava V, Ow DW (2001) Single copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol Biol 46:561–566

    Article  CAS  PubMed  Google Scholar 

  15. Moore SK, Srivastava V (2006) Efficient deletion of transgenic DNA from complex integration locus of rice mediated by Cre/lox recombination system. Crop Sci 46:700–705

    Article  CAS  Google Scholar 

  16. De Paepe A, De Buck S, Hoorelbeke K et al (2009) High frequency of single-copy T-DNA transformants produced by floral dip in CRE-expressing Arabidopsis plants. Plant J 59:517–527

    Article  PubMed  Google Scholar 

  17. Czarnecka E, Ingersoll JC, Gurley WB (1992) AT-rich promoter elements of soybean heat shock gene Gmhsp17.5E bind two distinct sets of nuclear proteins in vitro. Plant Mol Biol 19:985–1000

    Article  CAS  PubMed  Google Scholar 

  18. Zhang W, Subbarao S, Addae P et al (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168

    Article  CAS  PubMed  Google Scholar 

  19. Vasil IK, Vasil V (2006) Transformation of wheat via particle bombardment. Methods Mol Biol 318:273–283

    CAS  PubMed  Google Scholar 

  20. Frame B, Main M, Schick R et al (2011) Genetic transformation using maize immature zygotic embryos. Methods Mol Biol 710:327–341

    Article  CAS  PubMed  Google Scholar 

  21. Ishida Y, Saito H, Ohta S et al (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–755

    Article  CAS  PubMed  Google Scholar 

  22. Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834

    Article  CAS  PubMed  Google Scholar 

  23. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res 19:1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research support from the USDA-NIFA (2006-33120-17718; 2010-33522-21715) and the Arkansas Bioscience Institute to V. Srivastava, and from the Chinese Ministry of Agriculture (2010ZX08010-001) to D. W. Ow are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Srivastava, V., Ow, D.W. (2015). Simplifying Transgene Locus Structure Through Cre-lox Recombination. In: Mysore, K., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 1287. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2453-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2453-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2452-3

  • Online ISBN: 978-1-4939-2453-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics