Skip to main content

Construction of Mismatched Inverted Repeat (IR) Silencing Vectors for Maximizing IR Stability and Effective Gene Silencing in Plants

  • Protocol
  • First Online:
  • 3313 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1287))

Abstract

Inverted repeat (IR) RNA silencing vectors containing homologous fragments of target endogenous plant genes, or pathogen genes, are the most widely used vectors to either study the function of genes involved in biotic stress or silence pathogens to induce plant resistance, respectively. RNA silencing has been exploited to produce transgenic plants with resistance to viral pathogens via posttranscriptional gene silencing (PTGS). In some cases, this technology is difficult to apply due to the instability of IR constructs during cloning and plant transformation. We have therefore developed a robust method for the production of long IR vector constructs by introducing base pair mismatches in the form of cytosine to thymine mutations on the sense arm by exposure to sodium bisulfite prior to assembly of the IR.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760

    Article  CAS  PubMed  Google Scholar 

  2. Wang MB, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant Microb Interact 25(10):1275–1285

    Article  CAS  Google Scholar 

  3. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  4. Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  5. Pooggin MM (2013) How can plant viruses evade siRNA-directed DNA methylation and silencing? Int J Mol Sci 14:15233–15259

    Article  PubMed Central  PubMed  Google Scholar 

  6. Vanderschuren H, Stupak M, Futterer J et al (2007) Engineering resistance to geminiviruses—review and perspectives. Plant Biotechnol J 5:207–220

    Article  CAS  PubMed  Google Scholar 

  7. Aregger M, Borah BK, Seguin J et al (2012) Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog 8:e1002941

    Article  PubMed Central  PubMed  Google Scholar 

  8. Llave C (2010) Virus-derived small interfering RNAs at the core of plant-virus interactions. Trends Plant Sci 15:701–707

    Article  CAS  PubMed  Google Scholar 

  9. Pantaleo V (2011) Plant RNA silencing in viral defence. Adv Exp Med Biol 722:39–58

    Article  CAS  PubMed  Google Scholar 

  10. Rajeswaran R, Pooggin MM (2012) Role of virus-derived small RNAs in plant antiviral defence: insights from DNA viruses. In: Sunkar R (ed) MicroRNAs in plant development and stress response. Springer-Verlag, Berlin, pp 261–289

    Chapter  Google Scholar 

  11. Hohn T, Vazquez F (2011) RNA silencing pathways of plants: Silencing and its suppression by plant DNA viruses. Biochim Biophys Acta 1809:588–600

    Article  CAS  PubMed  Google Scholar 

  12. Zvereva AS, Pooggin MM (2012) Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4:2578–2597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jackson AL, Linsley PS (2004) Noise amidst the silence: off-target effects of siRNAs? Trends Genet 20:521–524

    Article  CAS  PubMed  Google Scholar 

  14. Senthil-Kumar M, Mysore KS (2011) Caveat of RNAi in plants: the off-target effect. In: Kodama H, Komamine A (eds) RNAi and plant gene function analysis, methods in molecular biology 744. Human, New York, pp 13–25

    Chapter  Google Scholar 

  15. Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:4985–4990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gebow D, Miselis N, Liber HL (2000) Homologous and non-homologous recombination resulting in deletion: effects of p53 status, micro-homology, and repetitive DNA length and orientation. Mol Cell Biol 20:4028–4035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Brunier D, Michel B, Ehrlich SD (1988) Copy choice illegitimate DNA recombination. Cell 52:883–892

    Article  CAS  PubMed  Google Scholar 

  18. Duckett DR, Murchie AIH, Diekmann S et al (1988) The structure of the Holliday junction and its resolution. Cell 55:79–89

    Article  CAS  PubMed  Google Scholar 

  19. Connelly JC, Kirkham LA, Leach DRF (1998) The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. Proc Natl Acad Sci U S A 95:7969–7974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Leach DR (1994) Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays 16:893–900

    Article  CAS  PubMed  Google Scholar 

  21. Sharples GJ, Chan SN, Mahdi AA et al (1994) Processing of intermediates in recombination and DNA repair: identification of a new endonuclease that specifically cleaves Holliday junctions. EMBO J 13:6133–6142

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Taylor SH, Harmse J, Arbuthnot P et al (2012) Construction of effective inverted repeat silencing constructs using sodium bisulfite treatment coupled with strand-specific PCR. Biotechniques 52(4):254–262

    Article  CAS  PubMed  Google Scholar 

  23. Gleave AP (1992) A versatile binary vector system with a T-DNA organizational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  CAS  PubMed  Google Scholar 

  24. Holsters M, de Waele D, Depicker A et al (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  CAS  PubMed  Google Scholar 

  25. Zuker M (2003) MFOLD web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the South African National Research Foundation, Casquip Starch Manufacturing Pty Ltd. (Jim Casey), and The Technical Innovation Agency for financial contributions to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Chrissie Rey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rey, M.E.C., Harmse, J., Taylor, S.H., Arbuthnot, P., Weinberg, M.S. (2015). Construction of Mismatched Inverted Repeat (IR) Silencing Vectors for Maximizing IR Stability and Effective Gene Silencing in Plants. In: Mysore, K., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 1287. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2453-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2453-0_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2452-3

  • Online ISBN: 978-1-4939-2453-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics