Skip to main content

Interpenetrating Polymer Network Composite Cryogels with Tailored Porous Morphology and Sorption Properties

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1286))

Abstract

Cryogels, by their particular morphology and mechanical properties, proved to be invaluable materials in biomedicine and biotechnology as carriers for molecules and cells, chromatographic materials for cell separations and cell culture. Methods used in the characterization of porosity and sorption properties of cryogels are very needful tools, which assist the investigator in the decision on the performances of the gel. Herein, we describe the preparation of ionic interpenetrating polymer network composite cryogels and the characterization methods of their porous morphology, and then the methods used for testing their sorption properties for ionic dyes used as models for drugs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zeng X, Wei W, Li X, Zeng J, Wu L (2007) Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Bioelectrochemistry 71:135–141

    Article  CAS  PubMed  Google Scholar 

  2. Liang S, Liu L, Huang Q, Yam KL (2009) Preparation of single or double-network chitosan/poly(vinyl alcohol) gel films through selectively cross-linking method. Carbohydr Polym 77:718–724

    Article  CAS  Google Scholar 

  3. Dragan ES, Apopei DF (2011) Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes. Chem Eng J 178:252–263

    Article  CAS  Google Scholar 

  4. Dragan ES, Perju MM, Dinu MV (2012) Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr Polym 88:270–281

    Article  CAS  Google Scholar 

  5. Lozinsky VL, Plieva FM, Galaev IY, Mattiasson B (2001) The potential of polymeric cryogels in bioseparation. Bioseparation 10:163–188

    Article  CAS  PubMed  Google Scholar 

  6. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  7. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  8. Savina IN, Cnudde V, D’Hollander S, Van Hoorebeke L, Mattiasson B, Galaev IY, Du Prez F (2007) Cryogels from poly(hydroxyethyl methacrylate): macroporous, interconnected materials with potential as cell scaffolds. Soft Matter 3:1176–1184

    Article  CAS  Google Scholar 

  9. Baydemir G, Bereli N, Andac M, Say R, Galaev IY, Denizli A (2009) Bilirubin recognition via molecularly imprinted supermacroporous cryogels. Colloids Surf B Biointerfaces 68:33–38

    Article  CAS  PubMed  Google Scholar 

  10. Kathuria N, Tripathi A, Kar KK, Kumar A (2009) Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering. Acta Biomater 5:406–418

    Article  CAS  PubMed  Google Scholar 

  11. Dispinar T, Van Camp W, De Cock LJ, De Geest BG, Du Prez FE (2012) Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering. Macromol Biosci 12:383–394

    Article  CAS  PubMed  Google Scholar 

  12. Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer 48:195–204

    Article  CAS  Google Scholar 

  13. Dinu MV, Perju MM, Dragan ES (2011) Porous semi-interpenetrating hydrogel networks based on dextran and polyacrylamide with superfast responsiveness. Macromol Chem Phys 212:240–251

    Article  CAS  Google Scholar 

  14. Dinu MV, Perju MM, Dragan ES (2011) Composite IPN ionic hydrogels based on polyacrylamide and dextran sulfate. React Funct Polym 71:881–890

    Article  CAS  Google Scholar 

  15. Burova TV, Grinberg NV, Kalinina EV, Ivanov RV, Lozinsky VI, Lorenzo CA, Grinberg VY (2011) Thermoresponsive copolymer cryogel possessing molecular memory: synthesis, energetics of collapse and interaction with ligands. Macromol Chem Phys 212:72–80

    Article  CAS  Google Scholar 

  16. Kirsebom H, Topggard D, Galaev IY, Mattiasson B (2010) Modulating the porosity of cryogels by influencing the nonfrozen liquid phase through the addition of inert solutes. Langmuir 26:16129–16133

    Article  CAS  PubMed  Google Scholar 

  17. Jain E, Karande AA, Kumar A (2011) Supermacroporous polymer-based cryogel bioreactor for monoclonal antibody production in continuous culture using hybridoma cells. Biotechnol Prog 27:170–180

    Article  CAS  PubMed  Google Scholar 

  18. Tekin K, Uzun L, Şahin CA, Bektaş S, Denizli A (2011) Preparation and characterization of composite cryogels containing imidazole group and use in heavy metal removal. React Funct Polym 71:985–993

    Article  CAS  Google Scholar 

  19. Liu M, Liu H, Bai L, Liu Y, Cheng J, Yang G (2011) Temperature swing adsorption of melamine on thermosensitive poly(N-isopropylacrylamide) cryogels. J Mater Sci 46:4820–4825

    Article  CAS  Google Scholar 

  20. Hajizadeh S, Kirsebom H, Galaev IY, Mattiasson B (2010) Evaluation of selective composite cryogel for bromate removal from drinking water. J Sep Sci 33:1752–1759

    Article  CAS  PubMed  Google Scholar 

  21. Demiryas N, Tuzmen N, Galaev IY, Pişkin E, Denizli A (2007) Poly(acrylamide-allyl glycidyl ether) cryogel as a stationary phase in dye affinity chromatography. J Appl Polym Sci 105:1808–1816

    Article  CAS  Google Scholar 

  22. Uygun DA, Akduman B, Uygun M, Akgöl S, Denizli A (2012) Purification of papain using Reactive Green 5 attached supermacroporous monolithic cryogel. Appl Biochem Biotechnol 167:552–563

    Article  CAS  PubMed  Google Scholar 

  23. Dragan ES, Lazar MM, Dinu MV, Doroftei F (2012) Macroporous composite IPN hydrogels based on poly(acrylamide) and chitosan with tuned swelling and sorption of cationic dyes. Chem Eng J 204–206:198–209

    Article  Google Scholar 

  24. Dragan ES, Apopei Loghin DF (2013) Enhanced sorption of Methylene Blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chem Eng J 234:211–222

    Article  CAS  Google Scholar 

  25. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590

    Article  CAS  Google Scholar 

  26. Risbud MV, Bhonde RR (2000) Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug Deliv 7:69–75

    Article  CAS  PubMed  Google Scholar 

  27. Ekici S, Saraydin D (2004) Synthesis, characterization and evaluation of IPN hydrogels for antibiotic release. Drug Deliv 11:381–388

    Article  CAS  PubMed  Google Scholar 

  28. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430

    Article  CAS  Google Scholar 

  29. Xia YQ, Guo TY, Song MD, Zhang BH, Zhang BL (2005) Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules 6:2601–2606

    Article  CAS  PubMed  Google Scholar 

  30. Gerente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Tech 37:41–127

    Article  CAS  Google Scholar 

  31. Keshava Murthy PS, Murali Mohan Y, Sreeramulu J, Mohana Raju K (2006) Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation. React Funct Polym 66:1482–1493

    Article  Google Scholar 

  32. Reis AV, Guilherme MR, Moia TA, Mattoso LHC, Muniz EC, Tambourgi EB (2008) Synthesis and characterization of a starch- modified hydrogel as potential carrier for drug delivery system. J Polym Sci A Polym Chem 46:2567–2574

    Article  CAS  Google Scholar 

  33. Dragan ES, Apopei Loghin DF (2013) Multiresponsive macroporous semi-IPN composite hydrogels based on native or anionically modified potato starch. Carbohydr Polym 92:23–32

    Article  CAS  PubMed  Google Scholar 

  34. Dinu MV, Pradny M, Dragan ES, Michalek J (2013) Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydr Polym 94:170–178

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ecaterina Stela Dragan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dragan, E.S., Dinu, M.V. (2015). Interpenetrating Polymer Network Composite Cryogels with Tailored Porous Morphology and Sorption Properties. In: Reichelt, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 1286. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2447-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2447-9_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2446-2

  • Online ISBN: 978-1-4939-2447-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics