Skip to main content

Preparation and Characterization of Fluorophenylboronic Acid-Functionalized Affinity Monolithic Columns for the Selective Enrichment of cis-Diol-Containing Biomolecules

  • Protocol
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1286))

Abstract

Boronate affinity monolithic columns have been developed into an important means for the selective recognition and capture of cis-diol-containing biomolecules, such as glycoproteins, nucleosides and saccharides. The ligands of boronic acids are playing an important role in boronate affinity monolithic columns. Although several boronate affinity monoliths with high affinity toward cis-diol-containing biomolecules have been reported, only few publications are focused on their detailed procedures for preparation and characterization. This chapter describes in detail the preparation and characterization of a boronate affinity monolithic column applying 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA) as a ligand. The DFFPBA-functionalized monolithic column not only exhibited an ultrahigh boronate affinity toward cis-diol-containing biomolecules, but also showed great potential for the selective enrichment of cis-diol-containing biomolecules in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James TD, Sandanayake K, Shinkai S (1996) Saccharide sensing with molecular receptors based on boronic acid. Angew Chem Int Ed 35:1910–1922

    Article  Google Scholar 

  2. Lee JH, Kim YS, Ha MY, Lee EK, Choo JB (2005) Immobilization of aminophenylboronic acid on magnetic beads for the direct determination of glycoproteins by matrix assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom 16:1456–1460

    Article  CAS  PubMed  Google Scholar 

  3. Xu Y, Wu Z, Zhang L, Lu HJ, Yang PY, Webley PA, Zhao DY (2009) Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem 81:503–508

    Article  CAS  PubMed  Google Scholar 

  4. Tang J, Liu YC, Qi DW, Yao GP, Deng CH, Zhang XM (2009) On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics 9:5046–5055

    Article  CAS  PubMed  Google Scholar 

  5. Zhang LJ, Xu YW, Yao HL, Xie LQ, Yao J, Lu HJ, Yang PY (2009) Boronic acid functionalized core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chem Eur J 15:10158–10166

    Article  CAS  PubMed  Google Scholar 

  6. Ren LB, Liu YC, Dong MM, Liu Z (2009) Synthesis of hydrophilic baronage affinity monolithic capillary for specific capture of glycoproteins by capillary liquid chromatography. J Chromatogr A 1216:8421–8425

    Article  CAS  PubMed  Google Scholar 

  7. Ren LB, Liu Z, Dong MM, Ye ML, Zou HF (2009) Synthesis and characterization of a new boronate affinity monolithic capillary for specific capture of cis-diol-containing compounds. J Chromatogr A 1216:4768–4774

    Article  CAS  PubMed  Google Scholar 

  8. Jiang YQ, Ma YF (2009) A fast capillary electrophoresis method for separation and quantification of modified nucleosides in urinary samples. Anal Chem 81:6474–6480

    Article  CAS  PubMed  Google Scholar 

  9. Chen M, Lu Y, Ma Q, Guo L, Feng YQ (2009) Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins. Analyst 134:2158–2164

    Article  CAS  PubMed  Google Scholar 

  10. Lu Y, Bie ZJ, Liu YC, Liu Z (2013) Fine-tuning the specificity of boronate affinity monoliths toward glycoproteins through pH manipulation. Analyst 138:290–298

    Article  CAS  PubMed  Google Scholar 

  11. Lin ZA, Pang JL, Yang HH, Cai ZW, Zhang L, Chen GN (2011) One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chem Commun 47:9675–9677

    Article  CAS  Google Scholar 

  12. Lin ZA, Pang JL, Lin Y, Huang H, Cai ZW, Zhang L, Chen GN (2011) Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography. Analyst 136:3281–3288

    Article  CAS  PubMed  Google Scholar 

  13. Hjerten S, Li YM, Liao JL, Mohammad J, Nakazato K, Pettersson G (1992) Continuous beds - high-resolving, cost-effective chromatographic matrices. Nature 356:810–811

    Article  Google Scholar 

  14. Svec F, Frechet JMJ (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273:205–211

    Article  CAS  PubMed  Google Scholar 

  15. Li HY, Liu Z (2012) Recent advances in monolithic column-based boronate-affinity chromatography. Trends Anal Chem 37:148–161

    Article  CAS  Google Scholar 

  16. Li XB, Pennington J, Stobaugh JF, Schöneich C (2008) Synthesis of sulfonamide- and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH. Anal Biochem 372:227–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Matsumoto A, Yoshida R, Kataoka K (2004) Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 5:1038–1045

    Article  CAS  PubMed  Google Scholar 

  18. Matsumoto A, Yamamoto K, Yoshida R, Kataoka K, Aoyagi T, Miyahara Y (2010) A totally synthetic glucose responsive gel operating in physiological aqueous conditions. Chem Commun 46:2203–2205

    Article  CAS  Google Scholar 

  19. Liu YC, Ren LB, Liu Z (2011) A unique boronic acid functionalized monolithic capillary for specific capture, separation and immobilization of cis-diol biomolecules. Chem Commun 47:5067–5069

    Article  CAS  Google Scholar 

  20. Li QJ, Lü CC, Li HY, Liu YC, Wang HY, Wang X, Liu Z (2012) Preparation of organic-silica hybrid boronate affinity monolithic column for the specific capture and separation of cis-diol-containing compounds. J Chromatogr A 1256:114–120

    Article  CAS  PubMed  Google Scholar 

  21. Li QJ, Lü CC, Liu Z (2013) Preparation and characterization of fluorophenylboronic acid-functionalized monolithic columns for high affinity capture of cis-diol-containing compounds. J Chromatogr A 1305:123–130

    Article  CAS  PubMed  Google Scholar 

  22. Wulff G (1982) Selective binding to polymers via covalent bonds – the construction of chiral cavities as specific receptor-sites. Pure Appl Chem 54:2093–2102

    Article  Google Scholar 

  23. Li HY, Liu YC, Liu J, Liu Z (2011) A Wulff-type boronate for boronate affinity capture of cis-diol compounds at medium acidic pH condition. Chem Commun 47:8169–8171

    Article  CAS  Google Scholar 

  24. Berube M, Dowlut M, Hall DG (2008) Benzoboroxoles as efficient glycopyranoside-binding agents in physiological conditions: structure and selectivity of complex formation. J Org Chem 73:6471–6479

    Article  CAS  PubMed  Google Scholar 

  25. Dowlut M, Hall DG (2006) An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J Am Chem Soc 128:4226–4227

    Article  CAS  PubMed  Google Scholar 

  26. Pal A, Berube M, Hall DG (2010) Design, synthesis, and screening of a library of peptidyl bis(boroxoles) as oligosaccharide receptors in water: identification of a receptor for the tumor marker TF-antigen disaccharide. Angew Chem Int Ed 49:1492–1495

    Article  CAS  Google Scholar 

  27. Schumacher S, Katterle M, Hettrich C, Paulke BR, Hall DG, Scheller FW, Gajovic-Eichelmann N (2011) Label-free detection of enhanced saccharide binding at pH 7.4 to nanoparticulate benzoboroxole based receptor units. J Mol Recognit 24:953–959

    Article  CAS  PubMed  Google Scholar 

  28. Li HY, Wang HY, Liu YC, Liu Z (2012) A benzoboroxole-functionalized monolithic column for the selective enrichment and separation of cis-diol-containing biomolecules. Chem Commun 48:4115–4117

    Article  CAS  Google Scholar 

  29. Ren LB, Liu Z, Liu YC, Dou P, Chen HY (2009) Ring-opening polymerization with synergistic co-monomers: access to a boronate-functionalized polymeric monolith for the specific capture of cis-diol-containing biomolecules under neutral conditions. Angew Chem Int Ed 48:6704–6707

    Article  CAS  Google Scholar 

  30. Liang L, Liu Z (2011) A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH. Chem Commun 47:2255–2257

    Article  CAS  Google Scholar 

  31. Lü CC, Li HY, Wang HY, Liu Z (2013) Probing the interactions between boronic acids and cis-diol-containing biomolecules by affinity capillary electrophoresis. Anal Chem 85:2361–2369

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (grants nos. 21075063, 21275073, and 21121091), the Natural Science Foundation of Jiangsu Province (grant no. KB2011054), and the Ministry of Science and Technology of China (grant no. 35-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Li, Q., Liu, Z. (2015). Preparation and Characterization of Fluorophenylboronic Acid-Functionalized Affinity Monolithic Columns for the Selective Enrichment of cis-Diol-Containing Biomolecules. In: Reichelt, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 1286. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2447-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2447-9_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2446-2

  • Online ISBN: 978-1-4939-2447-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics