Skip to main content

Affinity Chromatography: A Historical Perspective

  • Protocol
Book cover Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1286))

Abstract

Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poole CF, Poole SK (1991) Chromatography today. Elsevier, Amsterdam

    Google Scholar 

  2. Hage DS (ed) (2006) Handbook of affinity chromatography, 2nd edn. Boca Raton, Taylor & Francis

    Google Scholar 

  3. Turkova J (1978) Affinity chromatography. Elsevier, Amsterdam

    Google Scholar 

  4. Scouten WH (1981) Affinity chromatography: bioselective adsorption on inert matrices. Wiley, New York

    Google Scholar 

  5. Parikh I, Cuatrecasas P (1985) Affinity chromatography. Chem Eng News 63:17–32

    CAS  Google Scholar 

  6. Walters RR (1985) Affinity chromatography. Anal Chem 57:1099A–1114A

    CAS  PubMed  Google Scholar 

  7. Ettre LS (1993) Nomenclature for chromatography. Pure Appl Chem 65:819–872

    CAS  Google Scholar 

  8. Tswett M (1907) The chemistry of chlorophyll, phylloxanthin, phyllocyanin, and chlorophyllane. Biochem Z 5:6–32

    CAS  Google Scholar 

  9. Starkenstein E (1910) Ferment action and the influence upon it of neutral salts. Biochem Z 24:210–218

    CAS  Google Scholar 

  10. Ambard L (1921) Amylase: its estimation and the mechanism of its action. Bull Soc Chim Biol 3:51–65

    CAS  Google Scholar 

  11. Holmbergh O (1933) Adsorption of α-amylase from malt by starch. Biochem Z 258:134–140

    CAS  Google Scholar 

  12. Tokuoka Y (1937) Koji amylase IX: existence of β-amylase. J Agric Chem Soc Japan 13:586–594

    CAS  Google Scholar 

  13. Hockenhull DJD, Herbert D (1945) The amylase and maltase of Clostridium acetobutylcium. Biochem J 39:102–106

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Northrup JH (1934) Crystalline pepsin, VI: inactivation by β- and γ-rays from radium and by ultraviolet light. J Gen Physiol 17:359–363

    Google Scholar 

  15. Lineweaver H, Jang R, Jansen EF (1949) Specificity and purification of polygalacturonase. Arch Biochem 20:137–152

    CAS  PubMed  Google Scholar 

  16. Grant NH, Robbins KC (1957) Porcine elastase and proelastase. Arch Biochem Biophys 66:396–403

    CAS  PubMed  Google Scholar 

  17. Landsteiner K (1920) Specific serum reactions induced by the addition of substances of known constitution (organic acids), XVI: antigens and serological specificity. Biochem Z 104:280–299

    CAS  Google Scholar 

  18. Kirk JS, Sumner JB (1934) The reaction between crystalline urease and antiurease. J Immunol 26:495–504

    CAS  Google Scholar 

  19. Marrack JR, Smith FC (1932) Quantitative aspects of immunity reactions: the combination of antibodies with simple haptenes. Br J Exp Pathol 13:394–402

    PubMed Central  CAS  Google Scholar 

  20. Heidelberger M, Kabat EA (1938) Quantitative studies on antibody purification, II: the dissociation of antibody from pneumococcus-specific precipitates and specifically agglutinated pneumococci. J Exp Med 67:181–199

    PubMed Central  CAS  PubMed  Google Scholar 

  21. D’Alessandro G, Sofia F (1935) The adsorption of antibodies from the sera of syphilitics and tuberculosis patients. Z lmmunitats 84:237–250

    Google Scholar 

  22. Meyer K, Pic A (1936) Isolation of antibodies by fixation on an adsorbent-antigen system with subsequent regeneration. Ann Inst Pasteur 56:401–412

    CAS  Google Scholar 

  23. Landsteiner K, van der Scheer J (1936) Cross reactions of immune sera to azoproteins. J Exp Med 63:325–339

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Campbell DH, Luescher E, Lerman LS (1951) Immunologic adsorbents I: isolation of antibody by means of a cellulose-protein antigen. Proc Natl Acad Sci U S A 37:575–578

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Lerman LS (1953) Antibody chromatography on an immunologically specific adsorbent. Nature 172:635–636

    CAS  PubMed  Google Scholar 

  26. Lerman LS (1953) A biochemically specific method for enzyme isolation. Proc Natl Acad Sci U S A 39:232–236

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Manecke G, Gillert KE (1955) Serologically specific adsorbents. Naturwissenschaften 42:212–213

    CAS  Google Scholar 

  28. Sutherland GB, Campbell DH (1958) The use of antigen-coated glass as a specific adsorbent for antibody. J Immunol 80:294–298

    CAS  PubMed  Google Scholar 

  29. Isliker HC (1957) Chemical nature of antibodies. Adv Prot Chem 12:387–463

    CAS  Google Scholar 

  30. Kabat EA, Mayer MM (1961) Experimental immunochemistry, 2nd edn. Thomas, Springfield, pp 781–797

    Google Scholar 

  31. Manecke G (1962) Reactive polymers and their use for the preparation of antibody and enzyme resins. Pure Appl Chem 4:507–520

    CAS  Google Scholar 

  32. Sehon AH (1963) Physicochemical and immunochemical methods for the isolation and characterization of antibodies. Br Med Bull 19:183–191

    CAS  PubMed  Google Scholar 

  33. Weliky N, Weetall HH, Gilden RV, Campbell DH (1964) Synthesis and use of some insoluble immunologically specific adsorbents. Immunochemistry 1:219–229

    CAS  PubMed  Google Scholar 

  34. Weliky N, Weetall HH (1965) Chemistry and use of cellulose derivatives for the study of biological systems. Immunochemistry 2:293–322

    CAS  PubMed  Google Scholar 

  35. Silman IH, Katchalski E (1966) Water-insoluble derivatives of enzymes, antigens, and antibodies. Annu Rev Biochem 35:873–908

    CAS  PubMed  Google Scholar 

  36. Arsenis C, McCormick DB (1964) Purification of liver flavokinase by column chromatography on flavine-cellulose compounds. J Biol Chem 239:3093–3097

    CAS  PubMed  Google Scholar 

  37. Arsenis C, McCormick DB (1966) Purification of flavin mononucleotide-dependent enzymes by column chromatography on flavin phosphate cellulose compounds. J Biol Chem 241:330–334

    CAS  PubMed  Google Scholar 

  38. Hjerten S (1964) The preparation of agarose spheres for chromatography of molecules and particles. Biochem Biophys Acta 79:393–398

    CAS  PubMed  Google Scholar 

  39. Axen R, Porath J, Ernback S (1967) Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature 214:1302–1304

    CAS  PubMed  Google Scholar 

  40. Cuatrecasas P, Wilchek M, Anfinsen CB (1968) Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci U S A 68:636–643

    Google Scholar 

  41. Hage DS, Bian M, Burks R, Ohnmacht C, Wa C (2005) Bioaffinity chromatography. In: Hage DS (ed) Handbook of Affinity Chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 5

    Google Scholar 

  42. Calton GJ (1984) Immunosorbent separations. Methods Enzymol 104:381–387

    CAS  PubMed  Google Scholar 

  43. Hage DS, Phillips TM (2006) Immunoaffinity chromatography. In: Hage DS (ed) Handbook of Affinity Chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 6

    Google Scholar 

  44. Moser AC, Hage DS (2010) Immunoaffinity chromatography: an introduction to applications and recent developments. Bioanalysis 2:769–790

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Fitzgerald J, Leonard P, Darcy E, O’Kennedy R (2011) Immunoaffinity chromatography. Methods Mol Biol 681:35–59

    CAS  PubMed  Google Scholar 

  46. Hage DS (1998) A survey of recent advances in analytical applications of immunoaffinity chromatography. J Chromatogr B Biomed Sci Appl 715:3–28

    CAS  PubMed  Google Scholar 

  47. Liener IE, Sharon N, Goldstein IJ (1986) The lectins: properties, functions and applications in biology and medicine. Academic, London

    Google Scholar 

  48. West I, Goldring O (1996) Lectin affinity chromatography. Methods Mol Biol 59:177–185

    CAS  PubMed  Google Scholar 

  49. Hermanson GT, Mallia AK, Smith PK (1992) Immobilized affinity ligand techniques. Academic, New York

    Google Scholar 

  50. Lindmark R, Biriell C, Sjoquist J (1981) Quantitation of specific IgG antibodies in rabbits by a solid-phase radioimmunoassay with 125I-protein A from Staphylococcus aureus. Scand J Immunol 14:409–420

    CAS  PubMed  Google Scholar 

  51. Ey PL, Prowse SJ, Jenkin CR (1978) Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry 15:429–436

    CAS  PubMed  Google Scholar 

  52. Bjorck L, Kronvall G (1984) Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J Immunol 133:969–974

    CAS  PubMed  Google Scholar 

  53. Alberts BM, Amodio FJ, Jenkins M, Gutmann ED, Ferris FL (1968) Studies with DNA-cellulose chromatography I: DNA-binding proteins from Escherichia coli. Cold Spring Harb Symp Quant Biol 33:289–305

    CAS  PubMed  Google Scholar 

  54. Weissbach A, Poonian M (1974) Nucleic acids attached to solid matrices. Methods Enzymol 34:463–475

    CAS  PubMed  Google Scholar 

  55. Moxley RA, Oak S, Gadgil H, Jarrett HW (2006) DNA affinity chromatography. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 7

    Google Scholar 

  56. Porath J, Carlsson J, Olsson I, Belfrage B (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599

    CAS  PubMed  Google Scholar 

  57. Staal G, Koster J, Kamp H, Van Milligen-Boersma L, Veeger C (1971) Human erythrocyte pyruvate kinase, its purification and some properties. Biochem Biophys Acta 227:86–92

    CAS  PubMed  Google Scholar 

  58. Weith HL, Wiebers JL, Gilham PT (1970) Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components. Biochemistry 9:4396–4401

    CAS  PubMed  Google Scholar 

  59. Chaga GS (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313–334

    CAS  PubMed  Google Scholar 

  60. Todorova D, Vijayalakshmi MA (2006) Immobilized metal-ion affinity chromatography. In: Hage DS (ed) Handbook of Affinity Chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 10

    Google Scholar 

  61. Cheung RCF, Wong JH, Ng TB (2012) Immobilized metal ion affinity chromatography: a review on its applications. Appl Microbiol Biotechnol 96:1411–1420

    CAS  PubMed  Google Scholar 

  62. Kaagedal L (2011) Immobilized metal ion affinity chromatography. Methods Biochem Anal 54:183–201

    CAS  Google Scholar 

  63. Labrou NE, Mazitsos K, Clonis YD (2006) Dye-ligand and biomimetic affinity chromatography. In: Hage DS (ed) Handbook of Affinity Chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 9

    Google Scholar 

  64. Janson J-C (ed) (2011) Protein purification: principles, high resolution methods, and applications. Wiley, Hoboken

    Google Scholar 

  65. Bergold A, Scouten WH (1983) Solid phase biochemistry. In: Scouten WH (ed) Borate chromatography. Wiley, New York, pp 149–187

    Google Scholar 

  66. Liu XC, Scouten WH (2006) Boronate affinity chromatography. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 8

    Google Scholar 

  67. Liu XC, Scouten WH (2000) Boronate affinity chromatography. In: Bailon P, Ehrlich GK, Fung WJ, Berthold W (eds) Affinity chromatography. Humana Press, Totowa, Chapter 12

    Google Scholar 

  68. Roming TS, Bell C, Drolet DW (1999) Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. J Chromatogr B Biomed Sci Appl 731:275–284

    Google Scholar 

  69. Huang PY, Carbonell RG (2000) Affinity chromatographic screening of soluble combinatorial peptide libraries. Biotechnol Bioeng 63:633–641

    Google Scholar 

  70. Kriz D, Ramstrom O, Mosbach K (1997) Molecular imprinting—new possibilities for sensor technology. Anal Chem 69:345A–349A

    CAS  Google Scholar 

  71. Sellergren B (2001) Molecularly imprinted polymers—man-made mimics of antibodies and their applications in analytical chemistry. Elsevier, Amsterdam

    Google Scholar 

  72. Komiyama M, Takeuchi T, Mukawa T, Asanuma H (2002) Molecular imprinting—from fundamentals to applications. Wiley-VCH, Weinheim

    Google Scholar 

  73. Haupt K (2006) Molecularly imprinted polymers—artificial receptors for affinity separations. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 30

    Google Scholar 

  74. Kim HS, Hage DS (2006) Immobilization methods for affinity chromatography. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 3

    Google Scholar 

  75. Mallik R, Hage DS (2006) Affinity monolith chromatography. J Sep Sci 12:1686–1704

    Google Scholar 

  76. Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem 405:2133–2145

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Ohlson S, Hansson L, Larsson PO, Mosbach K (1978) High performance liquid affinity chromatography (HPLAC) and its application to the separation of enzymes and antigens. FEBS Lett 93:5–9

    CAS  PubMed  Google Scholar 

  78. Larsson PO (1984) High-performance liquid affinity chromatography. Methods Enzymol 104:212–223

    CAS  PubMed  Google Scholar 

  79. Gustavsson PE, Larsson PO (2006) Support materials for affinity chromatography. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 2

    Google Scholar 

  80. Yoo MJ, Hage DS (2010) Affinity monolith chromatography: principles and recent developments. In: Wang P (ed) Monolithic chromatography and its modern applications. ILM Publications, UK, Chapter 1

    Google Scholar 

  81. Hage DS (2000) Periodate oxidation of antibodies for site-selective immobilization in immunoaffinity chromatography. In: Bailon P, Ehrlich GW, Fung W-J, Berthold W (eds) Affinity chromatography: methods and protocols. Humana Press, Totowa, Chapter 7

    Google Scholar 

  82. Zeng CM, Zhang Y, Lu L, Brekkan E, Lundqvist A, Lundahl P (1997) Immobilization of human red cells in gel particles for chromatographic activity studies of the glucose transporter Glut1. Biochim Biophys Acta 1325:91–98

    CAS  PubMed  Google Scholar 

  83. Yang Q, Lundahl P (1995) Immobilized proteoliposome affinity chromatography for quantitative analysis of specific interactions between solutes and membrane proteins: interaction of cytochalasin B with the glucose transporter Glut 1. Biochemistry 34:7289–7294

    CAS  PubMed  Google Scholar 

  84. Jackson AJ, Xuan H, Hage DS (2010) Entrapment of proteins in glycogen-capped and hydrazide-activated supports. Anal Biochem 404:106–108

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Jackson AJ, Anguizola J, Pfaunmiller EL, Hage DS (2013) Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin. Anal Bioanal Chem 405:5833–5841

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Zachariou M (ed) (2010) Affinity chromatography: methods and protocols. Humana Press, Totowa

    Google Scholar 

  87. Subramanian A (2006) General considerations in preparative affinity chromatography. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 11

    Google Scholar 

  88. Jordan N, Krull IS (2006) Affinity chromatography in biotechnology. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 18

    Google Scholar 

  89. Wilchek M, Miron T, Kohn J (1984) Affinity chromatography. Methods Enzymol 104:3–55

    CAS  PubMed  Google Scholar 

  90. Friedberg F, Rhoads AR (2006) Affinity chromatography of enzymes. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 12

    Google Scholar 

  91. McConnell JP, Anderson DJ (1993) Determination of fibrinogen in plasma by high-performance immunoaffinity chromatography. J Chromatogr 615:67–75

    CAS  PubMed  Google Scholar 

  92. Wolfe CAC, Clarke W, Hage DS (2006) Affinity methods in clinical and pharmaceutical analysis. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 17

    Google Scholar 

  93. Nelson MA, Hage DS (2006) Environmental analysis by affinity chromatography. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 19

    Google Scholar 

  94. Hage DS (1999) Affinity chromatography: a review of clinical applications. Clin Chem 45:593–615

    CAS  PubMed  Google Scholar 

  95. Hage DS, Nelson MA (2001) Chromatographic immunoassays. Anal Chem 73:198A–205A

    CAS  Google Scholar 

  96. Moser AC, Hage DS (2006) Chromatographic immunoassays. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 29

    Google Scholar 

  97. Allenmark S (1991) Chromatographic enantioseparation: methods and applications, 2nd edn. Ellis Horwood, New York

    Google Scholar 

  98. Patel S, Wainer IW, Lough WJ (2006) Affinity-based chiral stationary phases. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 21

    Google Scholar 

  99. Wainer IW (ed) (1993) Drug stereochemistry: analytical methods and pharmacology, 2nd edn. New York, Marcel Dekker

    Google Scholar 

  100. Haginaka J (2001) Protein-based chiral stationary phases for high-performance liquid chromatographic enantioseparations. J Chromatogr A 906:253–273

    CAS  PubMed  Google Scholar 

  101. Briscoe CJ, Clarke W, Hage DS (2006) Affinity mass spectrometry. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 27

    Google Scholar 

  102. de Frutos M, Regnier FE (1993) Tandem chromatographic-immunological analysis. Anal Chem 65:17A–25A

    PubMed  Google Scholar 

  103. Irth H, Oosterkamp AJ, Tjaden UR, van der Greef J (1995) Strategies for online coupling of immunoassays to HPLC. Trends Anal Chem 14:355–361

    CAS  Google Scholar 

  104. Phillips TM, Hage DS (2006) Microanalytical methods based on affinity chromatography. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 28

    Google Scholar 

  105. Phillips TM, Kalish H (2013) Clinical applications of capillary electrophoresis. Human Press, New York

    Google Scholar 

  106. Chaiken IM (ed) (1987) Analytical affinity chromatography. CRC Press, Boca Raton

    Google Scholar 

  107. Hage DS, Chen J (2006) Quantitative affinity chromatography - practical aspects. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 22

    Google Scholar 

  108. Winzor DJ (2006) Quantitative affinity chromatography - recent theoretical developments. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 23

    Google Scholar 

  109. Schiel JE, Joseph KS, Hage DS (2009) Biointeraction affinity chromatography: general principles and recent developments. In: Grinsberg N, Grushka E (eds) Advances in chromatography, vol 147. Taylor & Francis, New York, Chapter 4

    Google Scholar 

  110. Hage DS, Anguizola JA, Jackson AJ, Matsuda R, Papastavros E, Pfaunmiller E, Tong Z, Vargas-Badilla J, Yoo MJ, Zheng X (2011) Chromatographic analysis of drug interactions in the serum proteome. Anal Methods 3:1449–1460

    CAS  Google Scholar 

  111. Patel S, Wainer IW, Lough WJ (2006) Chromatographic studies of molecular recognition and solute binding to enzymes and plasma proteins. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 24

    Google Scholar 

  112. Andrews P, Kitchen BJ, Winzor D (1973) Use of affinity chromatography for the quantitative study of acceptor–ligand interactions: the lactose synthetase system. Biochem J 135:897–900

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Dunn BM, Chaiken IM (1975) Quantitative affinity chromatography. determination of binding constants by elution with competitive inhibitors. Proc Natl Acad Sci U S A 71:2382–2385

    Google Scholar 

  114. Kasai KI, Ishii SI (1975) Quantitative analysis of affinity chromatography of trypsin. A new technique for investigation of protein-ligand interaction. J Biochem 77:261–264

    CAS  PubMed  Google Scholar 

  115. Heegaard NHH, Schou C (2006) Affinity ligands in capillary electrophoresis. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 26

    Google Scholar 

  116. Kraak JC, Busch S, Poppe H (1992) Study of protein-drug binding using capillary zone electrophoresis. J Chromatogr 608:257–264

    CAS  PubMed  Google Scholar 

  117. Yang J, Hage DS (1994) Chiral separations in capillary electrophoresis using human serum albumin as a buffer additive. Anal Chem 66:2719–2725

    CAS  PubMed  Google Scholar 

  118. Chu Y-H, Whitesides GM (1992) Affinity capillary electrophoresis can simultaneously measure binding constants of multiple peptides to vancomycin. J Org Chem 57:3524–3525

    CAS  Google Scholar 

  119. Carpenter JL, Camilleri P, Dhanak D, Goodall D (1992) A study of the binding of vancomycin to dipeptides using capillary electrophoresis. J Chem Soc Chem Commun 11:804–806

    Google Scholar 

  120. Denizot FC, Delaage MA (1975) Statistical theory of chromatography: new outlooks for affinity chromatography. Proc Natl Acad Sci U S A 72:4840–4843

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Anderson DJ, Walters RR (1986) Equilibrium and rate constants of immobilized concanavalin A determined by high-performance affinity chromatography. J Chromatogr 376:69–85

    CAS  Google Scholar 

  122. Loun B, Hage DS (1996) Chiral separation mechanisms in protein-based HPLC columns. 1. Kinetic studies of (R)- and (S)-warfarin binding to immobilized human serum albumin. Anal Chem 68:1218–1225

    CAS  PubMed  Google Scholar 

  123. Hage DS, Walters RR, Hethcote HW (1986) Split-peak affinity chromatography studies of the immobilization-dependent adsorption kinetics of protein A. Anal Chem 58:274–279

    CAS  PubMed  Google Scholar 

  124. Hage DS, Walters RR (1988) Dual-column determination of albumin and mmunoglobulin in serum by high-performance affinity chromatography. J Chromatogr 436:111–135

    CAS  Google Scholar 

  125. Rollag JG, Hage DS (1998) Non-linear elution effects in split-peak chromatography, II: role of ligand heterogeneity in solute binding to columns with adsorption-limited kinetics. J Chromatogr A 795:185–198

    CAS  PubMed  Google Scholar 

  126. Moore RM, Walters RR (1987) Peak-decay method for the measurement of dissociation rate constants by high-performance affinity chromatography. J Chromatogr 384:91–103

    CAS  Google Scholar 

  127. Chen J, Schiel JE, Hage DS (2009) Non-competitive peak decay analysis of drug-protein dissociation by high-performance affinity chromatography and peak profiling. J Sep Sci 32:1632–1641

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Yoo MJ, Hage DS (2011) Use of peak decay analysis and affinity microcolumns containing silica monoliths for rapid determination of drug-protein dissociation rates. J Chromatogr A 1218:2072–2078

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Jozwiak K, Haginaka J, Moaddel R, Wainer IW (2002) Displacement and nonlinear chromatographic techniques in the investigation of interaction of noncompetitive inhibitors with an immobilized α3β4 nicotinic acetylcholine receptor liquid chromatographic stationary phase. Anal Chem 74:4618–4624

    CAS  PubMed  Google Scholar 

  130. Moaddel R, Wainer I (2007) Conformational mobility of immobilized proteins. J Pharm Biomed Anal 43:399–406

    CAS  PubMed  Google Scholar 

  131. Homola J, Yee SS, Myszka DG (2002) Surface plasmon resonance biosensors. In: Ligler CA (ed) Optical biosensors: present and future. Elsevier, Amsterdam, pp 207–251

    Google Scholar 

  132. Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 11:54–61

    CAS  PubMed  Google Scholar 

  133. Long SD, Myszka DG (2006) Affinity-based optical biosensors. In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. Taylor and Francis, Boca Raton, Chapter 25

    Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the National Institutes of Health under grants R01 DK069629 and R01 GM044931 and by the National Science Foundation under grants CMI 1309806 and EPS 1004094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Hage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hage, D.S., Matsuda, R. (2015). Affinity Chromatography: A Historical Perspective. In: Reichelt, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 1286. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2447-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2447-9_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2446-2

  • Online ISBN: 978-1-4939-2447-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics