Skip to main content

QTL Mapping Using High-Throughput Sequencing

  • Protocol
  • First Online:
Book cover Plant Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1284))

Abstract

Quantitative trait locus (QTL) mapping in plants dates to the 1980s (Stuber et al. Crop Sci 27: 639–648, 1987; Paterson et al. Nature 335: 721–726, 1988), but earlier studies were often hindered by the expense and time required to identify large numbers of polymorphic genetic markers that differentiated the parental genotypes and then to genotype them on large segregating mapping populations. High-throughput sequencing has provided an efficient means to discover single nucleotide polymorphisms (SNPs) that can then be assayed rapidly on large populations with array-based techniques (Gupta et al. Heredity 101: 5–18, 2008). Alternatively, high-throughput sequencing methods such as restriction site-associated DNA sequencing (RAD-Seq) (Davey et al. Nat Rev Genet 12: 499–510, 2011; Baird et al. PloS ONE 3: e3376, 2008) and genotyping-by-sequencing (GBS) (Elshire et al. PLoS One 6: 2011; Glaubitz et al. PLoS One 9: e90346, 2014) can be used to identify and genotype polymorphic markers directly.

Linkage disequilibrium (LD) between markers and causal variants is needed to detect QTL. The earliest QTL mapping methods used backcross and F2 generations of crosses between inbred lines, which have high levels of linkage disequilibrium (dependent entirely on the recombination frequency between chromosomal positions), to ensure that QTL would have sufficiently high linkage disequilibrium with one or more markers on sparse genetic linkage maps. The downside of this approach is that resolution of QTL positions is poor. The sequencing technology revolution, by facilitating genotyping of vastly more markers than was previously feasible, has allowed researchers to map QTL in situations of lower linkage disequilibrium, and consequently, at higher resolution.

We provide a review of methods to identify QTL with higher precision than was previously possible. We discuss modifications of the traditional biparental mapping population that provide higher resolution of QTL positions, QTL fine-mapping procedures, and genome-wide association studies, all of which are greatly facilitated by high-throughput sequencing methods. Each of these procedures has many variants, and consequently many details to consider; we focus our chapter on the consequences of practical decisions that researchers make when designing QTL mapping studies and when analyzing the resulting data. The ultimate goal of many of these studies is to resolve a QTL to its causal sequence variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMullen MD (2003) Quantitative trait locus analysis as a gene discovery tool. In: Grotewold E (ed) Methods in molecular biology, vol 236, Plant functional genomics: methods and protocols. Humana Press, Totowa, NJ, pp 141–154

    Google Scholar 

  2. Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  CAS  PubMed  Google Scholar 

  3. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511

    Article  CAS  PubMed  Google Scholar 

  4. Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320

    Article  CAS  PubMed  Google Scholar 

  5. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  6. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  7. De Wit P, Pespeni MH, Ladner JT, Barshis DJ, Seneca F, Jaris H, Therkildsen NO, Morikawa M, Palumbi SR (2012) The simple fool’s guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour 12:1058–1067

    Google Scholar 

  8. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed Central  PubMed  Google Scholar 

  9. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ganal MW, Wieseke R, Luerssen H, Durstewitz G, Graner E-M, Plieske J, Polley A (2014) High-throughput SNP profiling of genetic resources in crop plants using genotyping arrays. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, New York, pp 113–130

    Chapter  Google Scholar 

  13. Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33

    Article  CAS  PubMed  Google Scholar 

  14. Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R (2005) Ascertainment bias in studies of human genome-wide polymorphism. Genome Res 15:1496–1502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Akey JM, Zhang K, Xiong M, Jin L (2003) The effect of single nucleotide polymorphism identification strategies on estimates of linkage disequilibrium. Mol Biol Evol 20:232–242

    Article  CAS  PubMed  Google Scholar 

  16. He C, Holme J, Anthony J (2014) SNP genotyping: the KASP assay. Methods Mol Biol 1145:75–86

    Article  PubMed  Google Scholar 

  17. Schleinitz D, Distefano JK, Kovacs P (2011) Targeted SNP genotyping using the TaqMan(R) assay. Methods Mol Biol 700:77–87

    Article  CAS  PubMed  Google Scholar 

  18. Jurinke C, van den Boom D, Cantor C, Köster H (2002) The use of MassARRAY technology for high throughput genotyping. In: Hoheisel J (ed) Chip technology. Springer, New York, pp 57–74

    Chapter  Google Scholar 

  19. Gabriel S, Ziaugra L, Tabbaa D (2001) SNP genotyping using the sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics. John Wiley & Sons, Inc., In

    Google Scholar 

  20. Wijnen CL, Keurentjes JJB (2014) Genetic resources for quantitative trait analysis: novelty and efficiency in design from an Arabidopsis perspective. Curr Opin Plant Biol 18:103–109

    Article  CAS  PubMed  Google Scholar 

  21. Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Schatzki J, Ecke W, Becker H, Möllers C (2014) Mapping of QTL for the seed storage proteins cruciferin and napin in a winter oilseed rape doubled haploid population and their inheritance in relation to other seed traits. Theor Appl Genet 127:1213–1222

    Article  CAS  PubMed  Google Scholar 

  23. Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 X Mo17 (IBM) population. Plant Mol Biol 48:453–461

    Article  CAS  PubMed  Google Scholar 

  24. Balint-Kurti PJ, Zwonitzer JC, Wisser RJ, Carson ML, Oropeza-Rosas MA, Holland JB, Szalma SJ (2007) Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 176:645–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Balint-Kurti PJ, Wisser R, Zwonitzer JC (2008) Use of an advanced intercross line population for precise mapping of quantitative trait loci for gray leaf spot resistance in maize. Crop Sci 48:1696–1704

    Article  Google Scholar 

  26. Huang Y-F, Madur D, Combes V, Ky CL, Coubriche D, Jamin P, Jouanne S, Dumas F, Bouty E, Bertin P, Charcosset A, Moreau L (2010) The genetic architecture of grain yield and related traits in Zea maize L. revealed by comparing intermated and conventional populations. Genetics 186:395–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Balasubramanian S, Schwartz C, Singh A, Warthmann N, Kim MC, Maloof JN, Loudet O, Trainer GT, Dabi T, Borevitz JO, Chory J, Weigel D (2009) QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS One 4:e4318

    Article  PubMed Central  PubMed  Google Scholar 

  28. Wang S, Basten CJ, Zeng Z-B (2006) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

    Google Scholar 

  29. Broman K, Sen Ś (2009) A guide to QTL mapping with R/qtl. Springer, Dordrecht

    Book  Google Scholar 

  30. Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  32. Winkler CR, Jensen NM, Cooper M, Podlich DW, Smith OS (2003) On the determination of recombination rates in intermated recombinant inbred populations. Genetics 164:741–745

    PubMed Central  PubMed  Google Scholar 

  33. Haldane JBS (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  34. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551

    Article  PubMed Central  PubMed  Google Scholar 

  35. Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839

    Article  CAS  PubMed  Google Scholar 

  36. Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, Tung C-W, McCouch S, Thomson M, Mauleon R, Singh RK, Gregorio G, Redoña E, Leung H (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice (N Y) 6:11

    Google Scholar 

  37. Huang BE, George AW (2011) R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics 27:727–729

    Article  CAS  PubMed  Google Scholar 

  38. Verhoeven KJF, Jannink JL, McIntyre LM (2006) Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity 96:139–149

    Article  CAS  PubMed  Google Scholar 

  39. Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184:799–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. McMullen MD, Kresovich S, Sanchez Villeda H, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  CAS  PubMed  Google Scholar 

  41. Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  CAS  PubMed  Google Scholar 

  42. Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  43. Wu XL, Jannink JL (2004) Optimal sampling of a population to determine QTL location, variance, and allelic number. Theor Appl Genet 108:1434–1442

    Article  PubMed  Google Scholar 

  44. Jannink J-L, Jansen R (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Bardol N, Ventelon M, Mangin B, Jasson S, Loywick V, Couton F, Derue C, Blanchard P, Charcosset A, Moreau L (2013) Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism. Theor Appl Genet 126:2717–2736

    Article  CAS  PubMed  Google Scholar 

  46. Jansen RC, Jannink J-L, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci 43:829–834

    Article  CAS  Google Scholar 

  47. Yu J, Holland JB, McMullen M, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed Central  PubMed  Google Scholar 

  48. Tian F, Bradbury PJ, Brown PJ, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  49. Kump KL, Bradbury PJ, Buckler ES, Belcher AR, Oropeza-Rosas M, Wisser RJ, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to Southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–169

    Article  CAS  PubMed  Google Scholar 

  50. Rockman MV, Kruglyak L (2008) Breeding designs for recombinant inbred advanced intercross lines. Genetics 179:1069–1078

    Article  PubMed Central  PubMed  Google Scholar 

  51. Williams CG (1997) QTL mapping in outbred pedigrees. In: Paterson AH (ed) Molecular dissection of complex traits. CRC, Boca Raton, FL, pp 81–94

    Chapter  Google Scholar 

  52. Liu S-C, Lin Y-R, Irvine JE, Paterson AH (2007) Mapping QTLs in autopolyploids. In: Paterson AH (ed) Molecular dissection of complex traits. CRC, Boca Raton, CL, pp 95–102

    Google Scholar 

  53. Robins JG, Luth D, Campbell TA, Bauchan GR, He C, Viands DR, Hansen JL, Brummer EC (2007) Genetic mapping of biomass production in tetraploid alfalfa. Crop Sci 47

    Google Scholar 

  54. Hackett CA, Luo ZW (2003) TetraploidMap: Construction of a linkage map in autotetraploid species. J Hered 94:358–359

    Article  CAS  PubMed  Google Scholar 

  55. Van Ooijen JW (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Wageningen, Netherlands Kyazma BV

    Google Scholar 

  56. Patterson HD, Williams ER (1976) A new class of resolvable incomplete block designs. Biometrika 63:83–92

    Article  Google Scholar 

  57. Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381–393

    Article  Google Scholar 

  58. Hung HY, Browne C, Guill K, Coles N, Eller M, Garcia A, Lepak N, Melia-Hancock S, Oropeza-Rosas M, Salvo S, Upadyayula N, Buckler ES, Flint-Garcia S, McMullen MD, Rocheford TR, Holland JB (2012) The relationship between parental genetic or phenotypic divergence and progeny variation in the maize Nested Association Mapping population. Heredity 108:490–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Moehring J, Williams ER, Piepho H-P (2014) Efficiency of augmented p-rep designs in multi-environmental trials. Theor Appl Genet 127:1049–1060

    Article  PubMed  Google Scholar 

  60. Mendiburu F (2014) Package agricolae: statistical procedures for agricultural research

    Google Scholar 

  61. Zeng Z-B, Kao C-H, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289

    Article  CAS  PubMed  Google Scholar 

  62. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  63. Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  64. Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci U S A 98:7922–7927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Alpert K, Tanksley S (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A 93:15503–15507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Alpert KB, Grandillo S, Tanksley SD (1995) fw 2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. TAG Theor Appl Genet 91:994–1000

    CAS  Google Scholar 

  68. Johnson EB, Haggard JE, St Clair DA (2012) Fractionation, stability, and isolate-specificity of QTL for resistance to Phytophthora infestans in cultivated tomato (Solanum lycopersicum). G3 (Bethesda) 2:1145–1159

    Article  Google Scholar 

  69. Studer AJ, Doebley JF (2011) Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1. Genetics 188:673–681

    Article  PubMed Central  PubMed  Google Scholar 

  70. Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2-alpha gene in tomato. Genetics 120:579–585

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  72. Durrett RT, Chen K-Y, Tanksley SD (2002) A simple formula useful for positional cloning. Genetics 160:353–355

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Gao S, Martinez C, Skinner D, Krivanek A, Crouch J, Xu Y (2008) Development of a seed DNA-based genotyping system for marker-assisted selection in maize. Mol Breeding 22:477–494

    Article  CAS  Google Scholar 

  74. Meru G, McDowell D, Waters V, Seibel A, Davis J, McGregor C (2013) A non-destructive genotyping system from a single seed for marker-assisted selection in watermelon. Genet Mol Res 12:702–709

    Article  CAS  PubMed  Google Scholar 

  75. Milne I, Shaw P, Stephen G, Bayer M, Cardle L, Thomas WTB, Flavell AJ, Marshall D (2010) Flapjack—graphical genotype visualization. Bioinformatics 26:3133–3134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Kump KL, Holland JB, Jung MT, Wolters P, Balint-Kurti PJ (2010) Joint analysis of near-isogenic and recombinant inbred line populations yields precise positional estimates for quantitative trait loci. Plant Genome US 3:142–153

    Article  Google Scholar 

  78. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang ZW, Costich DE, Buckler ES (2009) Association mapping: Critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    CAS  Google Scholar 

  80. Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  CAS  PubMed  Google Scholar 

  81. Yang XH, Yan JB, Shah T, Warburton ML, Li Q, Li L, Gao YF, Chai YC, Fu ZY, Zhou Y, Xu ST, Bai GH, Meng YJ, Zheng YP, Li JS (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431

    Article  PubMed  Google Scholar 

  82. Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Barrett JC, Cardon LR (2006) Evaluating coverage of genome-wide association studies. Nat Genet 38:659–662

    Article  CAS  PubMed  Google Scholar 

  84. Flint-Garcia SA, Thornsberry JM, Buckler ESI (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Physiol Plant Mol Biol 54:357–374

    Article  CAS  Google Scholar 

  85. Frascaroli E, Schrag TA, Melchinger AE (2013) Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor Appl Genet 126:133–141

    Article  PubMed  Google Scholar 

  86. Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2:e1367

    Article  PubMed Central  PubMed  Google Scholar 

  87. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  88. Zila CT, Samayoa LF, Santiago R, Butron A, Holland JB (2013) A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. G3 (Bethesda) 3:2095–2104

    Article  Google Scholar 

  89. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  90. Wimmer V, Albrecht T, Auinger H-J, Schön C-C (2012) Synbreed: A framework for the analysis of genomic prediction data using R. Bioinformatics 28:2086–2087

    Article  CAS  PubMed  Google Scholar 

  91. Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink J-L, Sorrells ME, Raman B, Cairns JE, Tarekegne A, Semagn K (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 (Bethesda) 2:1427–1436

    Article  Google Scholar 

  92. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed Central  PubMed  Google Scholar 

  93. Zhang ZW, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu JM, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Shin J-H, Blay S, McNeney B, Graham J (2006) LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J Stat Software 16

    Google Scholar 

  95. Frey TJ, Weldekidan T, Colbert T, Wolters PJCC, Hawk JA (2011) Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) GW Wils. using near-isogenic maize hybrids. Crop Sci 51:1551–1563

    Article  Google Scholar 

  96. Ahern KR, Deewatthanawong P, Schares J, Muszynski M, Weeks R, Vollbrecht E, Duvick J, Brendel VP, Brutnell TP (2009) Regional mutagenesis using Dissociation in maize. Methods 49:248–254

    Article  CAS  PubMed  Google Scholar 

  97. Settles AM, Holding DR, Tan BC, Latshaw SP, Liu J, Suzuki M, Li L, O’Brien BA, Fajardo DS, Wroclawska E (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8:116

    Article  PubMed Central  PubMed  Google Scholar 

  98. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed Central  PubMed  Google Scholar 

  99. McGinnis KM (2010) RNAi for functional genomics in plants. Brief Funct Genomics 9:111–117

    Article  CAS  PubMed  Google Scholar 

  100. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao G-H, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104:11376–11381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet. doi:10.1038/ng.942

    PubMed Central  PubMed  Google Scholar 

  102. Yang Q, Li Z, Li W, Ku L, Wang C, Ye J, Li K, Yang N, Li Y, Zhong T (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci U S A 110:16969–16974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Beavis, W.D. (1998) QTL analyses: Power, precision, and accuracy. In, Paterson, A.H., Ed. Molecular Dissection of Complex Traits. CRC Press, Boca Raton, FL, p. 145–162

    Google Scholar 

  104. Piepho H-P, Gauch HG Jr (2001) Marker pair selection for mapping quantitative trait loci. Genetics 157:433–444

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jamann, T.M., Balint-Kurti, P.J., Holland, J.B. (2015). QTL Mapping Using High-Throughput Sequencing. In: Alonso, J., Stepanova, A. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 1284. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2444-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2444-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2443-1

  • Online ISBN: 978-1-4939-2444-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics