Skip to main content

Mapping Biochemical Networks with Protein Fragment Complementation Assays

  • Protocol
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1278))

Abstract

Cellular biochemical machineries, what we call pathways, consist of dynamically assembling and disassembling macromolecular complexes. Although our models for the organization of biochemical machines are derived largely from in vitro experiments, do they reflect their organization in intact, living cells? We have developed a general experimental strategy that addresses this question by allowing the quantitative probing of molecular interactions in intact, living cells. The experimental strategy is based on Protein fragment Complementation Assays (PCA), a method whereby protein interactions are coupled to refolding of enzymes from cognate fragments where reconstitution of enzyme activity acts as the detector of a protein interaction. A biochemical machine or pathway is defined by grouping interacting proteins into those that are perturbed in the same way by common factors (hormones, metabolites, enzyme inhibitors, etc.). In this chapter we review some of the essential principles of PCA and provide details and protocols for applications of PCA, particularly in mammalian cells, based on three PCA reporters, dihydrofolate reductase, green fluorescent protein, and β-lactamase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drees BL (1999) Progress and variations in two-hybrid and three-hybrid technologies. Curr Opin Chem Biol 3:64–70

    Article  CAS  PubMed  Google Scholar 

  2. Evangelista C, Lockshon D, Fields S (1996) The yeast two-hybrid system: prospects for protein linkage maps. Trends Cell Biol 6:196–199

    Article  CAS  PubMed  Google Scholar 

  3. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  4. Vidal M, Legrain P (1999) Yeast forward and reverse ‘n’-hybrid systems. Nucleic Acids Res 27:919–929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Walhout AJ, Sordella R, Lu X et al (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122

    Article  CAS  PubMed  Google Scholar 

  6. Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  CAS  PubMed  Google Scholar 

  7. Michnick SW, Remy I, Campbell-Valois FX et al (2000) Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol 328:208–230

    Article  CAS  PubMed  Google Scholar 

  8. Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci U S A 99:15608–15613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Paulmurugan R, Gambhir SS (2003) Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal Chem 75:1584–1589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Luker KE, Smith MC, Luker GD et al (2004) Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci U S A 101:12288–12293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Magliery TJ, Wilson CG, Pan W et al (2005) Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc 127:146–157

    Article  CAS  PubMed  Google Scholar 

  13. Remy I, Michnick SW (2006) A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat Methods 3:977–979

    Article  CAS  PubMed  Google Scholar 

  14. Wehr MC, Laage R, Bolz U et al (2006) Monitoring regulated protein-protein interactions using split TEV. Nat Methods 3:985–993

    Article  CAS  PubMed  Google Scholar 

  15. Michnick SW, Ear PH, Manderson EN et al (2007) Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 6:569–582

    Article  CAS  PubMed  Google Scholar 

  16. Remy I, Michnick SW (2007) Application of protein-fragment complementation assays in cell biology. Biotechniques 42:137, 139, 141 passim

    Article  CAS  PubMed  Google Scholar 

  17. Stefan E, Aquin S, Berger N et al (2007) Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. Proc Natl Acad Sci U S A 104:16916–16921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Michnick SW, Ear PH, Landry C et al (2010) A toolkit of protein-fragment complementation assays for studying and dissecting large-scale and dynamic protein-protein interactions in living cells. Methods Enzymol 470:335–368

    Article  CAS  PubMed  Google Scholar 

  19. Michnick SW, Ear PH, Landry C et al (2011) Protein-fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein-protein interactions in living cells. Methods Mol Biol 756:395–425

    Article  CAS  PubMed  Google Scholar 

  20. Anfinsen CB, Haber E, Sela M et al (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci U S A 47:1309–1314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  22. Gutte B, Merrifield RB (1971) The synthesis of ribonuclease A. J Biol Chem 246:1922–1941

    CAS  PubMed  Google Scholar 

  23. Richards FM (1958) On the Enzymic Activity of Subtilisin-Modified Ribonuclease. Proc Natl Acad Sci U S A 44:162–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Taniuchi H, Anfinsen CB (1971) Simultaneous formation of two alternative enzymology active structures by complementation of two overlapping fragments of staphylococcal nuclease. J Biol Chem 246:2291–2301

    CAS  PubMed  Google Scholar 

  25. Pelletier JN, Campbell-Valois FX, Michnick SW (1998) Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc Natl Acad Sci U S A 95:12141–12146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pelletier JN, Michnick SW (1997) A protein complementation assay for detection of protein-protein interactions in vivo. Protein Eng 10:89

    Article  CAS  Google Scholar 

  27. Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A 91:10340–10344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rossi F, Charlton CA, Blau HM (1997) Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc Natl Acad Sci U S A 94:8405–8410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Remy I, Michnick SW (1999) Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci U S A 96:5394–5399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Remy I, Wilson IA, Michnick SW (1999) Erythropoietin receptor activation by a ligand-induced conformation change. Science 283:990–993

    Article  CAS  PubMed  Google Scholar 

  31. Remy I, Michnick SW (2001) Visualization of biochemical networks in living cells. Proc Natl Acad Sci U S A 98:7678–7683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Remy I, Campbell-Valois FX, Michnick SW (2007) Detection of protein-protein interactions using a simple survival protein-fragment complementation assay based on the enzyme dihydrofolate reductase. Nat Protoc 2:2120–2125

    Article  CAS  PubMed  Google Scholar 

  33. Tarassov K, Messier V, Landry CR et al (2008) An in vivo map of the yeast protein interactome. Science 320:1465–1470

    Article  CAS  PubMed  Google Scholar 

  34. Galarneau A, Primeau M, Trudeau LE et al (2002) Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat Biotechnol 20:619–622

    Article  CAS  PubMed  Google Scholar 

  35. Remy I, Ghaddar G, Michnick SW (2007) Using the beta-lactamase protein-fragment complementation assay to probe dynamic protein-protein interactions. Nat Protoc 2:2302–2306

    Article  CAS  PubMed  Google Scholar 

  36. Israel DI, Kaufman RJ (1993) Dexamethasone negatively regulates the activity of a chimeric dihydrofolate reductase/glucocorticoid receptor protein. Proc Natl Acad Sci U S A 90:4290–4294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kaufman RJ, Bertino JR, Schimke RT (1978) Quantitation of dihydrofolate reductase in individual parental and methotrexate-resistant murine cells. Use of a fluorescence activated cell sorter. J Biol Chem 253:5852–5860

    CAS  PubMed  Google Scholar 

  38. Kaufman RJ (1990) Selection and coamplification of heterologous genes in mammalian cells. Methods Enzymol 185:537–566

    Article  CAS  PubMed  Google Scholar 

  39. Zlokarnik G, Negulescu PA, Knapp TE et al (1998) Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279:84–88

    Article  CAS  PubMed  Google Scholar 

  40. Zlokarnik G (2000) Fusions to beta-lactamase as a reporter for gene expression in live mammalian cells. Methods Enzymol 326:221–244

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Michnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Remy, I., Michnick, S.W. (2015). Mapping Biochemical Networks with Protein Fragment Complementation Assays. In: Meyerkord, C., Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 1278. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2425-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2425-7_31

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2424-0

  • Online ISBN: 978-1-4939-2425-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics