Skip to main content
Book cover

NF-kappa B pp 121–154Cite as

Systematic Detection of Noncanonical NF-κB Activation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1280))

Abstract

In unstimulated cells, NF-κB dimers usually exist as latent complexes in the cytoplasm with the IκB (inhibitor of NF-κB) proteins or IκB-like protein p100, the precursor of NF-κB2 mature form p52. Accordingly, there are two major mechanisms leading to NF-κB activation: inducible degradation of IκBs and processing of p100 to generate p52 (selective degradation of the C-terminal IκB-like sequence of p100), which are termed the canonical and noncanonical NF-κB pathways, respectively. While activation of the canonical NF-κB pathway plays critical roles in a wide range of biological processes, the noncanonical NF-κB pathway has important but more restricted roles in both normal and pathological processes. Systematic detection of the noncanonical NF-κB pathway activation is very important for understanding the physiological role of this pathway in biological processes, and for the diagnosis, prevention, and treatment of related diseases. We describe here the methods we employ to detect noncanonical NF-κB activation in cells and tissues. These methods are immunoblotting, co-immunoprecipitation, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation (ChIP) analysis, and electrophoretic mobility shift assay (EMSA). Noncanonical NF-κB-induced gene expression changes can be determined by gene array analysis and quantitative real-time PCR.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Xiao G, Fu J (2011) NF-kappaB and cancer: a paradigm of Yin-Yang. Am J Cancer Res 1(2):192–221

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Xiao G et al (2006) Alternative pathways of NF-kappaB activation: a double-edged sword in health and disease. Cytokine Growth Factor Rev 17(4):281–293

    Article  CAS  PubMed  Google Scholar 

  3. Claudio E et al (2002) BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol 3(10):958–965

    Article  CAS  PubMed  Google Scholar 

  4. Coope HJ et al (2002) CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 21(20):5375–5385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dejardin E et al (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17(4):525–535

    Article  CAS  PubMed  Google Scholar 

  6. Novack DV et al (2003) The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198(5):771–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Saitoh T et al (2003) TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 278(38):36005–36012

    Article  CAS  PubMed  Google Scholar 

  8. Xiao G, Harhaj EW, Sun SC (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7(2):401–409

    Article  CAS  PubMed  Google Scholar 

  9. Qing G, Qu Z, Xiao G (2005) Stabilization of basally translated NF-kappaB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kappaB2 p100. J Biol Chem 280(49):40578–40582

    Article  CAS  PubMed  Google Scholar 

  10. Liao G et al (2004) Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 279(25):26243–26250

    Article  CAS  PubMed  Google Scholar 

  11. Grech AP et al (2004) TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 21(5):629–642

    Article  CAS  PubMed  Google Scholar 

  12. Senftleben U et al (2001) Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293(5534):1495–1499

    Article  CAS  PubMed  Google Scholar 

  13. Vallabhapurapu S et al (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9(12):1364–1370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zarnegar BJ et al (2008) Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 9(12):1371–1378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fong A, Sun SC (2002) Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100. J Biol Chem 277(25):22111–22114

    Article  CAS  PubMed  Google Scholar 

  16. Xiao G, Fong A, Sun SC (2004) Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem 279(29):30099–30105

    Article  CAS  PubMed  Google Scholar 

  17. Ling L, Cao Z, Goeddel DV (1998) NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 95(7):3792–3797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Franzoso G et al (1998) Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J Exp Med 187(2):147–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Caamano JH et al (1998) Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J Exp Med 187(2):185–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Yin L et al (2001) Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 291(5511):2162–2165

    Article  CAS  PubMed  Google Scholar 

  21. Shinkura R et al (1999) Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet 22(1):74–77

    Article  CAS  PubMed  Google Scholar 

  22. Miyawaki S et al (1994) A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur J Immunol 24(2):429–434

    Article  CAS  PubMed  Google Scholar 

  23. Futterer A et al (1998) The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9(1):59–70

    Article  CAS  PubMed  Google Scholar 

  24. Thompson JS et al (2001) BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293(5537):2108–2111

    Article  CAS  PubMed  Google Scholar 

  25. Shulga-Morskaya S et al (2004) B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J Immunol 173(4):2331–2341

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki Y et al (2004) TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol 173(4):2245–2252

    Article  CAS  PubMed  Google Scholar 

  27. Kawabe T et al (1994) The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1(3):167–178

    Article  CAS  PubMed  Google Scholar 

  28. Dougall WC et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13(18):2412–2424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ishikawa H et al (1997) Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-kappaB2. J Exp Med 186(7):999–1014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Mackay F et al (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190(11):1697–1710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Khare SD et al (2000) Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci U S A 97(7):3370–3375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Moore CR et al (2012) Specific deletion of TRAF3 in B lymphocytes leads to B-lymphoma development in mice. Leukemia 26(5):1122–1127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rosebeck S et al (2011) Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 331(6016):468–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Rosebeck S, Lucas PC, McAllister-Lucas LM (2011) Protease activity of the API2-MALT1 fusion oncoprotein in MALT lymphoma development and treatment. Future Oncol 7(5):613–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Pham LV et al (2011) Constitutive BR3 receptor signaling in diffuse, large B-cell lymphomas stabilizes nuclear factor-kappaB-inducing kinase while activating both canonical and alternative nuclear factor-kappaB pathways. Blood 117(1):200–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Demchenko YN et al (2010) Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 115(17):3541–3552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Compagno M et al (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459(7247):717–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Keats JJ et al (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12(2):131–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Annunziata CM et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2):115–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Nagel I et al (2009) Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia 23(11):2153–2155

    Article  CAS  PubMed  Google Scholar 

  41. Braggio E et al (2009) Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom’s macroglobulinemia. Cancer Res 69(8):3579–3588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18(49):6938–6947

    Article  CAS  PubMed  Google Scholar 

  43. Sun SC, Xiao G (2003) Deregulation of NF-kappaB and its upstream kinases in cancer. Cancer Metastasis Rev 22(4):405–422

    Article  CAS  PubMed  Google Scholar 

  44. Qing G, Qu Z, Xiao G (2007) Endoproteolytic processing of C-terminally truncated NF-kappaB2 precursors at kappaB-containing promoters. Proc Natl Acad Sci U S A 104(13):5324–5329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Qu Z, Xiao G (2011) Human T-cell lymphotropic virus: a model of NF-kappaB-associated tumorigenesis. Viruses 3(6):714–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Xiao G, Sun SC (2000) Activation of IKKalpha and IKKbeta through their fusion with HTLV-I tax protein. Oncogene 19(45):5198–5203

    Article  CAS  PubMed  Google Scholar 

  47. Xiao G et al (2001) Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 20(23):6805–6815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Qu Z et al (2004) Tax deregulation of NF-kappaB2 p100 processing involves both beta-TrCP-dependent and -independent mechanisms. J Biol Chem 279(43):44563–44572

    Article  CAS  PubMed  Google Scholar 

  49. Fu J et al (2011) The tumor suppressor gene WWOX links the canonical and noncanonical NF-kappaB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 117(5):1652–1661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. de Oliveira DE, Ballon G, Cesarman E (2010) NF-kappaB signaling modulation by EBV and KSHV. Trends Microbiol 18(6):248–257

    Article  PubMed  Google Scholar 

  51. Wu JT, Kral JG (2005) The NF-kappaB/IkappaB signaling system: a molecular target in breast cancer therapy. J Surg Res 123(1):158–169

    Article  CAS  PubMed  Google Scholar 

  52. Storz P (2013) Targeting the alternative NF-kappaB pathway in pancreatic cancer: a new direction for therapy? Expert Rev Anticancer Ther 13(5):501–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ueda Y, Richmond A (2006) NF-kappaB activation in melanoma. Pigment Cell Res 19(2):112–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Groom J et al (2002) Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest 109(1):59–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zhang J et al (2001) Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 166(1):6–10

    Article  CAS  PubMed  Google Scholar 

  56. Cheema GS et al (2001) Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 44(6):1313–1319

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gutian Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Qu, Z., Xiao, G. (2015). Systematic Detection of Noncanonical NF-κB Activation. In: May, M. (eds) NF-kappa B. Methods in Molecular Biology, vol 1280. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2422-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2422-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2421-9

  • Online ISBN: 978-1-4939-2422-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics