Skip to main content

Characterizing the DNA Binding Site Specificity of NF-κB with Protein-Binding Microarrays (PBMs)

  • Protocol
  • First Online:
NF-kappa B

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1280))

Abstract

NF-κB transcription factors control a wide array of important cellular and organismal processes in eukaryotes. All NF-κB transcription factors bind to DNA target sites as dimers. In vertebrates, there are five NF-κB subunits, p50, p52, RelA (p65), c-Rel, and RelB, that can form almost all combinations of homodimers and heterodimers, which recognize distinct, but overlapping, target sequences. In this chapter, we describe the use of protein-binding microarrays (PBMs), a high-throughput method to measure the binding of proteins to different DNA sequences. PBM datasets allow for sensitive comparisons of NF-κB dimer DNA-binding differences and can aid in the computational and experimental prediction of NF-κB target genes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  CAS  PubMed  Google Scholar 

  2. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866

    Article  CAS  PubMed  Google Scholar 

  3. Smale ST (2012) Dimer-specific regulatory mechanisms within the NF-kappaB family of transcription factors. Immunol Rev 246(1):193–204

    Article  PubMed  Google Scholar 

  4. Natoli G (2006) Tuning up inflammation: how DNA sequence and chromatin organization control the induction of inflammatory genes by NF-kappaB. FEBS Lett 580(12):2843–2849

    Article  CAS  PubMed  Google Scholar 

  5. Akira S, Kishimoto T (1997) NF-IL6 and NF-kappa B in cytokine gene regulation. Adv Immunol 65:1–46

    Article  CAS  PubMed  Google Scholar 

  6. Leung TH, Hoffmann A, Baltimore D (2004) One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell 118(4):453–464

    Article  CAS  PubMed  Google Scholar 

  7. Wang VY, Huang W, Asagiri M, Spann N et al (2012) The transcriptional specificity of NF-kappaB dimers is coded within the kappaB DNA response elements. Cell Rep 2(4):824–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mrinal N, Tomar A, Nagaraju J (2011) Role of sequence encoded kappaB DNA geometry in gene regulation by Dorsal. Nucleic Acids Res 39(22):9574–9591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Carey MF, Peterson CL, Smale ST (2013) Electrophoretic mobility-shift assays. Cold Spring Harb Protoc 2013(7):636–639

    Article  PubMed  Google Scholar 

  10. Carey MF, Peterson CL, Smale ST (2013) DNase I footprinting. Cold Spring Harb Protoc 2013(5):469–478

    PubMed  Google Scholar 

  11. Carey MF, Peterson CL, Smale ST (2012) Experimental strategies for the identification of DNA-binding proteins. Cold Spring Harb Protoc 2012(1):18–33

    Article  PubMed  Google Scholar 

  12. Kinzler KW, Vogelstein B (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10(2):634–642

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  14. Siggers T, Gordan R (2013) Protein-DNA binding: complexities and multi-protein codes. Nucleic Acids Res. doi:10.1093/nar/gkt1112

    PubMed Central  PubMed  Google Scholar 

  15. Berger MF, Philippakis AA, Qureshi AM, He FS et al (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24(11):1429–1435

    Article  CAS  PubMed  Google Scholar 

  16. Bulyk ML, Gentalen E, Lockhart DJ, Church GM (1999) Quantifying DNA-protein interactions by double-stranded DNA arrays. Nat Biotechnol 17(6):573–577

    Article  CAS  PubMed  Google Scholar 

  17. Mukherjee S, Berger MF, Jona G, Wang XS et al (2004) Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet 36(12):1331–1339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Linnell J, Mott R, Field S, Kwiatkowski DP et al (2004) Quantitative high-throughput analysis of transcription factor binding specificities. Nucleic Acids Res 32(4):e44

    Article  PubMed Central  PubMed  Google Scholar 

  19. Field S, Udalova I, Ragoussis J (2007) Accuracy and reproducibility of protein-DNA microarray technology. Adv Biochem Eng Biotechnol 104:87–110

    CAS  PubMed  Google Scholar 

  20. Siggers T, Chang AB, Teixeira A, Wong D et al (2012) Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-kappaB family DNA binding. Nat Immunol 13(1):95–102

    Article  CAS  Google Scholar 

  21. Badis G, Berger MF, Philippakis AA, Talukder S et al (2009) Diversity and complexity in DNA recognition by transcription factors. Science 324(5935):1720–1723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bolotin E, Chellappa K, Hwang-Verslues W, Schnabl JM et al (2011) Nuclear receptor HNF4alpha binding sequences are widespread in Alu repeats. BMC Genomics 12:560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhu C, Byers KJ, McCord RP, Shi Z et al (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19(4):556–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Berger MF, Badis G, Gehrke AR, Talukder S et al (2008) Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133(7):1266–1276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gordan R, Murphy KF, McCord RP, Zhu C et al (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12(12):R125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ryzhakov G, Teixeira A, Saliba D, Blazek K et al (2013) Cross-species analysis reveals evolving and conserved features of the nuclear factor kappaB (NF-kappaB) proteins. J Biol Chem 288(16):11546–11554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Copley RR, Totrov M, Linnell J, Field S et al (2007) Functional conservation of Rel binding sites in drosophilid genomes. Genome Res 17(9):1327–1335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Grove CA, De Masi F, Barrasa MI, Newburger DE et al (2009) A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138(2):314–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wang JK, Li TX, Bai YF, Lu ZH (2003) Evaluating the binding affinities of NF-kappaB p50 homodimer to the wild-type and single-nucleotide mutant Ig-kappaB sites by the unimolecular dsDNA microarray. Anal Biochem 316(2):192–201

    Article  CAS  PubMed  Google Scholar 

  30. Wong D, Teixeira A, Oikonomopoulos S, Humburg P et al (2011) Extensive characterization of NF-kappaB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. Genome Biol 12(7):R70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Rucker P, Torti FM, Torti SV (1997) Recombinant ferritin: modulation of subunit stoichiometry in bacterial expression systems. Protein Eng 10(8):967–973

    Article  CAS  PubMed  Google Scholar 

  32. Dudley AM, Aach J, Steffen MA, Church GM (2002) Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc Natl Acad Sci U S A 99(11):7554–7559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gordan R, Narlikar L, Hartemink AJ (2010) Finding regulatory DNA motifs using alignment-free evolutionary conservation information. Nucleic Acids Res 38(6):90

    Article  Google Scholar 

  34. Workman CT, Yin Y, Corcoran DL, Ideker T et al (2005) enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Res 33(Web Server issue):W389–W392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Siggers T, Duyzend MH, Reddy J, Khan S, Bulyk ML (2011) Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex. Mol Syst Biol 7:555

    Article  PubMed Central  PubMed  Google Scholar 

  36. Berger MF, Bulyk ML (2009) Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc 4(3):393–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratories on DNA binding by NF-kB proteins was supported by NIH grant K22AI09379 (T.S.), NSF grant MCB-090461 (T.D.G), and NSF grant IOS-1354935 (T.S. and T.D.G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Siggers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Siggers, T., Gilmore, T.D., Barron, B., Penvose, A. (2015). Characterizing the DNA Binding Site Specificity of NF-κB with Protein-Binding Microarrays (PBMs). In: May, M. (eds) NF-kappa B. Methods in Molecular Biology, vol 1280. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2422-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2422-6_36

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2421-9

  • Online ISBN: 978-1-4939-2422-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics