Skip to main content

Monitoring Translocation of Multisubunit RNA Polymerase Along the DNA with Fluorescent Base Analogues

  • Protocol
  • First Online:
Bacterial Transcriptional Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1276))

Abstract

Here we describe a direct fluorescence method that reports real-time occupancies of the pre- and post-translocated state of multisubunit RNA polymerase. In a stopped-flow setup, this method is capable of resolving a single base-pair translocation motion of RNA polymerase in real time. In a conventional spectrofluorometer, this method can be employed for studies of the time-averaged distribution of RNA polymerase on the DNA template. This method utilizes commercially available base analogue fluorophores integrated into template DNA strand in place of natural bases. We describe two template DNA strand designs where translocation of RNA polymerase from a pre-translocation to a post-translocation state results in disruption of stacking interactions of fluorophore with neighboring bases, with a concomitant large increase in fluorescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Hippel PH (1998) An integrated model of the transcription complex in elongation, termination, and editing. Science 281:660–665

    Article  Google Scholar 

  2. Svetlov V, Nudler E (2009) Macromolecular micromovements: how RNA polymerase translocates. Curr Opin Struct Biol 19:701–707

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J, Landick R (2009) Substrate Loading, Nucleotide Addition, and Translocation by RNA Polymerase. In: Buc H, Strick T (eds) RNA polymerases as molecular motors. Royal Society of Chemistry, Cambridge, pp 206–234

    Chapter  Google Scholar 

  4. Erie DA, Kennedy SR (2009) Forks, pincers, and triggers: the tools for nucleotide incorporation and translocation in multi-subunit RNA polymerases. Curr Opin Struct Biol 19:708–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kireeva M, Kashlev M, Burton ZF (2010) Translocation by multi-subunit RNA polymerases. Biochim Biophys Acta Gene Regul Mech 1799:389–401

    Article  CAS  Google Scholar 

  6. Cheung ACM, Cramer P (2012) A movie of RNA polymerase II transcription. Cell 149:1431–1437

    Article  CAS  PubMed  Google Scholar 

  7. Hawkins ME (2007) Synthesis, purification and sample experiment for fluorescent pteridine-containing DNA: tools for studying DNA interactive systems. Nat Protoc 2:1013–1021

    Article  CAS  PubMed  Google Scholar 

  8. Malinen AM, Turtola M, Parthiban M et al (2012) Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res 40:7442–7451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Artsimovitch I, Svetlov V, Nemetski SM et al (2011) Tagetitoxin inhibits RNA polymerase through trapping of the trigger loop. J Biol Chem 286:40395–40400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Belogurov GA, Vassylyeva MN, Sevostyanova A et al (2009) Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457:332–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Holmes SF, Foster JE, Erie DA (2003) Kinetics of multisubunit RNA polymerases: experimental methods and data analysis. Methods Enzymol 371:71–81

    Article  CAS  PubMed  Google Scholar 

  13. Nedialkov YA, Gong XQ, Yamaguchi Y et al (2003) Assay of transient state kinetics of RNA polymerase II elongation. Methods Enzymol 371:252–264

    Article  CAS  PubMed  Google Scholar 

  14. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  15. Green MR, Sambrook J (2012) Separation of RNA according to Size: Electrophoresis of RNA through Denaturing Urea Polyacrylamide Gels. In: Green MR, Sambrook J (eds) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 393–400

    Google Scholar 

  16. Summer H, Grämer R, Dröge P (2009) Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J Vis Exp 32:1485

    PubMed  Google Scholar 

  17. Johnson KA (2009) Fitting enzyme kinetic data with KinTek global kinetic explorer. Methods Enzymol 467:601–626

    Article  CAS  PubMed  Google Scholar 

  18. Yuzenkova Y, Zenkin N (2010) Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis. Proc Natl Acad Sci U S A 107:10878–10883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhang J, Palangat M, Landick R (2010) Role of the RNA polymerase trigger loop in catalysis and pausing. Nat Struct Mol Biol 17:99–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hein PP, Palangat M, Landick R (2011) RNA transcript 3′-proximal sequence affects translocation bias of RNA polymerase. Biochemistry 50:7002–7014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Barshop BA, Wrenn RF, Frieden C (1983) Analysis of numerical methods for computer simulation of kinetic processes: development of KINSIM – a flexible, portable system. Anal Biochem 130:134–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland grants 130581 and 263713 to G.A.B. Essential equipment was contributed by Walter and Lisi Wahl Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgiy A. Belogurov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Malinen, A.M., Turtola, M., Belogurov, G.A. (2015). Monitoring Translocation of Multisubunit RNA Polymerase Along the DNA with Fluorescent Base Analogues. In: Artsimovitch, I., Santangelo, T. (eds) Bacterial Transcriptional Control. Methods in Molecular Biology, vol 1276. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2392-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2392-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2391-5

  • Online ISBN: 978-1-4939-2392-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics