Skip to main content

Metabonomics and Drug Development

  • Protocol
  • First Online:
Metabonomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1277))

Abstract

Metabolites as an end product of metabolism possess a wealth of information about altered metabolic control and homeostasis that is dependent on numerous variables including age, sex, and environment. Studying significant changes in the metabolite patterns has been recognized as a tool to understand crucial aspects in drug development like drug efficacy and toxicity. The inclusion of metabonomics into the OMICS study platform brings us closer to define the phenotype and allows us to look at alternatives to improve the diagnosis of diseases. Advancements in the analytical strategies and statistical tools used to study metabonomics allow us to prevent drug failures at early stages of drug development and reduce financial losses during expensive phase II and III clinical trials. This chapter introduces metabonomics along with the instruments used in the study; in addition relevant examples of the usage of metabonomics in the drug development process are discussed along with an emphasis on future directions and the challenges it faces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholson JK, Lindon JC, Holmes E et al (1999) Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  CAS  PubMed  Google Scholar 

  2. Tsui LC, Dorfman R et al (2013) The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb Perspect Med 3:a009472. doi:10.1101/cshperspect.a009472

    Article  PubMed Central  PubMed  Google Scholar 

  3. Craig J (2008) Complex diseases: research and applications. Nat Edu 1(1):184

    Google Scholar 

  4. Chen L, Wu J (2012) Systems biology for complex diseases. J Mol Cell Biol 4:125–126

    Article  PubMed  Google Scholar 

  5. Nicholson JK, Wilson ID (2003) Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2(8):668–676

    Article  CAS  PubMed  Google Scholar 

  6. Wishart DS (2008) Applications of metabolomics in drug discovery and development. Drugs R D 9:307–322

    Article  CAS  PubMed  Google Scholar 

  7. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2(3):155–168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Dunn WB, Broadhurst D, Griffin JL et al (2011) Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40:387–426

    Article  CAS  PubMed  Google Scholar 

  9. Smolinska A, Blanchet L, Buydens LM, Wijmenga SS (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery—a review. Anal Chim Acta 750:82–97

    Article  CAS  PubMed  Google Scholar 

  10. Ma S, Chowdhury SK (2013) Data acquisition and data mining techniques for metabolite identification using LC coupled to high-resolution MS. Bioanalysis 5:1285–1297

    Article  CAS  PubMed  Google Scholar 

  11. Doring G, Lackner H (1970) NMR spectroscopy identification of barbiturates. II. studies on biological material. Arch Toxikol 26:237–250

    Article  CAS  PubMed  Google Scholar 

  12. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161

    Article  CAS  PubMed  Google Scholar 

  13. Keun HC, Beckonert O, Griffin JL et al (2002) Cryogenic Probe 13C NMR spectroscopy of urine for metabonomic studies. Anal Chem 74(17):4588–4593

    Article  CAS  PubMed  Google Scholar 

  14. Olsson LE, Chai CM, Axelsson O et al (2006) Magnetic resonance coronary angiography in pigs with intraarterial injections of a hyperpolarized 13C substance. Magn Reson Med 55:731–737

    Article  PubMed  Google Scholar 

  15. Dettmer K, Aronov PA, Hammock BD et al (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wilson ID, Nicholson JK, Plumb JRS et al (2005) High resolution “ultra performance” liquid chromatography coupled to OA-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res 4:591–598

    Article  CAS  PubMed  Google Scholar 

  17. Muller DC, Degen C, Scherer G et al (2014) Metabolomics using GC-TOF-MS followed by subsequent GC-Fid and HILIC-MS/MS analysis revealed significantly altered fatty acid and phospholipid species profiles in plasma of smokers. J Chromatogr B Analyt Technol Biomed Life Sci 966:117–126. doi:10.1016/j.jchromb.2014.02.044

    Article  PubMed  Google Scholar 

  18. Cretich M, Chiari M, Pirri G, Crippa A et al (2005) Electroosmotic flow suppression in capillary electrophoresis: chemisorption of trimethoxy silane-modified polydimethylacrylamide. Electrophoresis 26:1913–1919

    Article  CAS  PubMed  Google Scholar 

  19. Soga T, Sugimoto M, Honma M et al (2011) Serum metabolomics reveals gamma-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J Hepatol 55:896–905

    Article  CAS  PubMed  Google Scholar 

  20. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C et al (2013) HMDB 3.0: the human metabolome database in 2013. Nucleic Acids Res 1:D801–D807

    Article  Google Scholar 

  21. Haug K, Reza M, Steinbeck C et al (2013) Metabolights: an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res 41:D781–D786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Schellenberger J, Park JO, Conrad TM, Palsson BO (2010) Bigg: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213

    Article  PubMed Central  PubMed  Google Scholar 

  23. Croft D, Mundo AF, D’Eustachio P et al (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics: a review in human disease diagnosis. Anal Chim Acta 659:23–33

    Article  CAS  PubMed  Google Scholar 

  25. Roberts LD, Koulman A, Griffin JL (2014) Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol 2:65–75

    Article  CAS  PubMed  Google Scholar 

  26. Zhao YY, Lin RC (2014) UPLC-MS(E) application in disease biomarker discovery: the discoveries in proteomics to metabolomics. Chem Biol Interact 215:7–16

    Article  CAS  PubMed  Google Scholar 

  27. Roberts LD, Gerszten RE (2013) Toward new biomarkers of cardiometabolic diseases. Cell Metab 18:43–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Valdes AM, Glass D, Spector TD (2013) OMICS technologies and the study of human ageing. Nat Rev Genet 14:601–607

    PubMed  Google Scholar 

  29. Mannello F, Ligi D (2013) Resolving breast cancer heterogeneity by searching reliable protein cancer biomarkers in the breast fluid secretome. BMC Cancer 13:344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ikeda A, Nishiumi S, Shinohara M et al (2012) Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed Chromatogr 26:548–558

    Article  CAS  PubMed  Google Scholar 

  31. Ritchie SA, Akita H, Takemasa IH et al (2013) Metabolic system alterations in pancreatic cancer patient serum: potential for early detection. BMC Cancer 13:416

    Article  PubMed Central  PubMed  Google Scholar 

  32. Yang J, Chen T, Sun L et al (2013) Potential metabolite markers of schizophrenia. Mol Psychiatry 18:67–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Tabak AG, Jokela M, Akbaraly TN et al (2009) Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373:2215–2221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wang TJ, Larson MG, Gerszten RE et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  PubMed Central  PubMed  Google Scholar 

  35. Chatterjee S, Richert L, Augustijns P, Annaert P (2014) Hepatocyte-based in vitro model for assessment of drug-induced cholestasis. Toxicol Appl Pharmacol 274:124–136

    Article  CAS  PubMed  Google Scholar 

  36. Dambach DM, Andrews BA, Moulin F (2005) New technologies and screening strategies for hepatotoxicity: use of in vitro models. Toxicol Pathol 33:17–26

    Article  CAS  PubMed  Google Scholar 

  37. Bjornsson ES, Bergmann OM, Olafsson S et al (2013) Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology 144:1419–1425

    Article  PubMed  Google Scholar 

  38. Rangnekar AS, Fontana RJ (2011) An update on drug induced liver injury. Minerva Gastroenterol Dietol 57:213–229

    CAS  PubMed  Google Scholar 

  39. Kim JW, Ryu SH, Kim KB et al (2013) Pattern recognition analysis for hepatotoxicity induced by acetaminophen using plasma and urinary 1H NMR-based metabolomics in humans. Anal Chem 85:11326–11334

    Article  CAS  PubMed  Google Scholar 

  40. Pannu N, Nadim MK (2008) An overview of drug-induced acute kidney injury. Crit Care Med 36:216–223

    Article  Google Scholar 

  41. Uehara T, Horinouchi A et al (2013) Identification of metabolomic biomarkers for drug-induced acute kidney injury in rats. J Appl Toxicol 34:1087–1095. doi:10.1001/jat.2933

    Article  PubMed  Google Scholar 

  42. Falconi A, Lopes G, Parker JL et al (2014) Biomarkers and receptor targeted therapies reduce clinical trial risk in non-small cell lung cancer. J Thorac Oncol 9:163–169

    Article  CAS  PubMed  Google Scholar 

  43. Hudler P, Kocevar N, Komel R et al (2014) Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. Scientific World Journal 2014:260348. doi:10.1155/20014/260348

    Article  PubMed Central  PubMed  Google Scholar 

  44. Serkova NJ, Spratlin JL, Eckhardt SG (2007) NMR-based metabolomics: translational application and treatment of cancer. Curr Opin Mol Ther 9:572–585

    CAS  PubMed  Google Scholar 

  45. Van der Greef J, Hankemeier T, McBurney RN et al (2006) Metabolomics-based systems biology and personalized medicine: moving towards N = 1 clinical trials? Pharmacogenomics 7:1087–1094

    Article  PubMed  Google Scholar 

  46. Johnson CH, Gonzalez FJ et al (2012) Challenges and opportunities of metabolomics. J Cell Physiol 227:2975–2981

    Article  CAS  PubMed  Google Scholar 

  47. Bino RJ, Hall RD, Fiehn O et al (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    Article  CAS  PubMed  Google Scholar 

  48. Fernie AR, Trethewey RN, Willmitzer L et al (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  CAS  PubMed  Google Scholar 

  49. Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  50. Goodacre R, Vaidyanathan S, Kell DB et al (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252

    Article  CAS  PubMed  Google Scholar 

  51. Griffin JL, Bollard ME (2004) Metabonomics: its potential as a tool in toxicology for safety assessment and data integration. Curr Drug Metab 5:389–398

    Article  CAS  PubMed  Google Scholar 

  52. Lindon JC, Holmes E, Nicholson JK (2004) Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 9:1–31

    Article  CAS  PubMed  Google Scholar 

  53. Lindon JC, Holmes E, Nicholson JK (2003) So What’s the deal with metabonomics? Anal Chem 75:384–391

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the ARIADME (Analytical Research in ADME profiling) project sponsored by FP7 Marie Skłodowska Curie grant under Grant Agreement No 607517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Van Schepdael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ramana, P., Adams, E., Augustijns, P., Van Schepdael, A. (2015). Metabonomics and Drug Development. In: Bjerrum, J. (eds) Metabonomics. Methods in Molecular Biology, vol 1277. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2377-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2377-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2376-2

  • Online ISBN: 978-1-4939-2377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics