Advertisement

MultiPLX: Automatic Grouping and Evaluation of PCR Primers

  • Lauris Kaplinski
  • Maido RemmEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1275)

Abstract

In this chapter we describe MultiPLX—a tool for automatic grouping of PCR primers for multiplexed PCR. Both generic working principle and step-by-step practical procedures with examples are presented.

MultiPLX performs grouping by calculating many important interaction levels between the different primer pairs and then distributes primer pairs to groups so that the strength of unwanted interactions is kept below user-defined compatibility level. In addition it can be used to select optimal primer pairs for multiplexing from list of candidates.

MultiPLX can be downloaded from http://bioinfo.ut.ee/?page_id=167. Graphical web-based interface to most functions of MultiPLX is available at http://bioinfo.ut.ee/multiplx/.

Key words

PCR Multiplex Primer design 

Notes

Acknowledgements

This work was supported by the grant EU19730 from Enterprise Estonia. Development of primer design software in our group has been funded by Centre of Excellence in Genomics at Estonian Biocentre (EU European Regional Development Fund). The authors thank Katre Palm for a valuable help with English grammar.

References

  1. 1.
    Kaplinski L, Andreson R, Puurand T et al (2005) MultiPLX: automatic grouping and evaluation of PCR primers. Bioinformatics 21:1701–1702CrossRefPubMedGoogle Scholar
  2. 2.
    Andreson R, Reppo E, Kaplinski L et al (2006) GENOMEMASKER package for designing unique genomic PCR primers. BMC Bioinformatics 7:172CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    von Ahsen N, Wittwer CT, Schutz E (2001) Oligonucleotide melting temperatures under PCR conditions: nearest-neighbor corrections for Mg2+, deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. Clin Chem 47:1956–1961Google Scholar
  4. 4.
    Allawi HT, SantaLucia J (1997) Thermodynamics and NMR of internal G-T mismatches in DNA. Biochemistry 36:10581–10594CrossRefPubMedGoogle Scholar
  5. 5.
    Allawi HT, SantaLucia J (1998) Nearest-neighbor thermodynamics of internal A-C mismatches in DNA: sequence dependence and pH effects. Biochemistry 37:9435–9444CrossRefPubMedGoogle Scholar
  6. 6.
    Allawi HT, SantaLucia J (1998) Nearest-neighbor thermodynamic parameters for internal G-A mismatches in DNA. Biochemistry 37:2170–2179CrossRefPubMedGoogle Scholar
  7. 7.
    Allawi HT, SantaLucia J (1998) Thermodynamics of internal C-T mismatches in DNA. Nucleic Acids Res 26:2694–2701CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Kaderali L (2001) Selecting target specific probes for DNA arrays. Universität zu Köln, KölnGoogle Scholar
  9. 9.
    Peyret N, Senevirtane PA, Allawi HT et al (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A-A, C-C, G-G and T-T mismatches. Biochemistry 38:3468–3477CrossRefPubMedGoogle Scholar
  10. 10.
    SantaLucia J, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BioinformaticsUniversity of TartuTartuEstonia
  2. 2.Estonian BiocentreTartuEstonia

Personalised recommendations