Advertisement

Fast Masking of Repeated Primer Binding Sites in Eukaryotic Genomes

  • Reidar Andreson
  • Lauris Kaplinski
  • Maido RemmEmail author
Protocol
  • 5.2k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1275)

Abstract

In this article we describe the working principle and a list of practical applications for GenomeMasker—a program that finds and masks all repeated DNA motifs in fully sequenced genomes. The GenomeMasker exhaustively finds and masks all repeated DNA motifs in studied genomes. The software is optimized for PCR primer design. The algorithm is designed for high-throughput work, allowing masking of large DNA regions, even entire eukaryotic genomes. Additionally, the software is able to predict all alternative PCR products from studied genomes for thousands of candidate PCR primer pairs.

Practical applications of the GenomeMasker are shown for command-line version of the GenomeMasker, which can be downloaded from http://bioinfo.ut.ee/download/. Graphical Web interfaces with limited options are available at http://bioinfo.ut.ee/genometester/ and http://bioinfo.ut.ee/snpmasker/.

Key words

PCR DNA repeats Primer design Microarrays DNA masking 

Notes

Acknowledgements

The development of GenomeMasker package was supported by the Estonian Ministry of Education and Research grant 0182649s04 and grant EU19730 from Enterprise Estonia. Development of primer design software in our group has been funded by Centre of Excellence in Genomics at Estonian Biocentre (EU European Regional Development Fund). The authors thank Katre Palm for a valuable help with English grammar.

References

  1. 1.
    Dawson E, Abecasis GR, Bumpstead S et al (2002) A first-generation linkage disequilibrium map of human chromosome 22. Nature 418:544–548CrossRefPubMedGoogle Scholar
  2. 2.
    Rouchka EC, Khalyfa A, Cooper NG (2005) MPrime: efficient large scale multiple primer and oligonucleotide design for customized gene microarrays. BMC Bioinformatics 6:175CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Xu D, Li G, Wu L et al (2002) PRIMEGENS: robust and efficient design of gene-specific probes for microarray analysis. Bioinformatics 18:1432–1437CrossRefPubMedGoogle Scholar
  4. 4.
    Weckx S, De Rijk P, Van Broeckhoven C et al (2005) SNPbox: a modular software package for large-scale primer design. Bioinformatics 21:385–387CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang Z, Schwartz S, Wagner L et al (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214CrossRefPubMedGoogle Scholar
  6. 6.
    Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large DNA databases. Genome Res 11:1725–1729CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12:656–664CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Rouillard JM, Zuker M, Gulari E (2003) OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res 31:3057–3062CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Van Hijum SA, De Jong A, Buist G et al (2003) UniFrag and GenomePrimer: selection of primers for genome-wide production of unique amplicons. Bioinformatics 19:1580–1582CrossRefPubMedGoogle Scholar
  12. 12.
    Untergrasser A, Cutcutache I, Koressaar T et al (2012) Primer3 – new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefGoogle Scholar
  13. 13.
    Breslauer KJ, Frank R, Blocker H et al (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83:3746–3750CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95:1460–1465CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Owczarzy R, You Y, Moreira BG et al (2004) Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 43:3537–3554CrossRefPubMedGoogle Scholar
  16. 16.
    Von Ahsen N, Wittwer CT, Schutz E (2001) Oligonucleotide melting temperatures under PCR conditions: nearest-neighbor corrections for Mg(2+), deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. Clin Chem 47:1956–1961Google Scholar
  17. 17.
    Kaplinski L, Andreson R, Puurand T et al (2005) MultiPLX: automatic grouping and evaluation of PCR primers. Bioinformatics 21:1701–1702CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Reidar Andreson
    • 1
    • 2
  • Lauris Kaplinski
    • 1
    • 2
  • Maido Remm
    • 1
    • 2
    Email author
  1. 1.Department of BioinformaticsUniversity of TartuTartuEstonia
  2. 2.Estonian BiocentreTartuEstonia

Personalised recommendations