Skip to main content

Fast High-Throughput Screening of H1N1 Virus by Parallel Detection with Multichannel Microchip Electrophoresis

  • Protocol
  • First Online:
Microchip Capillary Electrophoresis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1274))

Abstract

Influenza is one of the acute respiratory diseases of human caused by the influenza A (H1N1) virus and accounted for major public health concerns worldwide. The polymerase chain reaction (PCR) methods are the most popular tools for clinical diagnosis of influenza A virus. Microchip electrophoresis is a widely used method for DNA molecules separation. Herein, we describe the fast and high-throughput separation of hemagglutinin (HA) and nucleocapsid protein (NP) gene PCR products (116 bp and 195 bp, respectively) by parallel detection with multichannel microchip electrophoresis and programmed step electric field strength (PSEFS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castillo-Salgado C (2010) Trends and directions of global public health surveillance. Epidemiol Rev 32:93–109

    Article  PubMed  Google Scholar 

  2. Ghebremedhin B, Engelmann I, Konig W et al (2009) Comparison of the performance of the rapid antigen detection actim Influenza A&B test and RT-PCR in different respiratory specimens. J Med Microbiol 58:365–370

    Article  CAS  PubMed  Google Scholar 

  3. Taylor J, McPhie K, Druce J et al (2009) Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses. J Med Virol 81:1918–1922

    Article  CAS  PubMed  Google Scholar 

  4. Kwon D, Shin K, Kwon M et al (2011) Development and evaluation of a rapid influenza diagnostic test for the pandemic (H1N1) 2009 influenza virus. J Clin Microbiol 49:437–438

    Article  PubMed Central  PubMed  Google Scholar 

  5. Tsao KC, Kuo YB, Huang CG et al (2011) Performance of rapid-test kits for the detection of the pandemic influenza A/H1N1 virus. J Virol Methods 173:387–389

    Article  CAS  PubMed  Google Scholar 

  6. Wenzel JJ, Walch H, Bollwein M et al (2009) Library of prefabricated locked nucleic acid hydrolysis probes facilitates rapid development of reverse-transcription quantitative real-time PCR assays for detection of novel influenza A/H1N1/09 virus. Clin Chem 55:2218–2222

    Article  CAS  PubMed  Google Scholar 

  7. Bose ME, Beck ET, Ledeboer N et al (2009) Rapid semiautomated subtyping of influenza virus species during the 2009 swine origin influenza A H1N1 virus epidemic in Milwaukee, Wisconsin. J Clin Microbiol 47:2779–2786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. He J, Bose ME, Beck ET et al (2009) Rapid multiplex reverse transcription-PCR typing of influenza A and B virus, and subtyping of influenza A virus into H1, 2, 3, 5, 7, 9, N1 (human), N1 (animal), N2, and N7, including typing of novel swine origin influenza A (H1N1) virus, during the 2009 outbreak in Milwaukee, Wisconsin. J Clin Microbiol 47:2772–2778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Amano Y, Cheng Q (2005) Detection of influenza virus: traditional approaches and development of biosensors. Anal Bioanal Chem 381:156–164

    Article  CAS  PubMed  Google Scholar 

  10. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    Article  CAS  PubMed  Google Scholar 

  11. Zhang P, Nan H, Lee MJ et al (2013) Ultra-fast separation of infectious disease-related small DNA molecules by single- and multi-channel microchip electrophoresis. Talanta 106:388–393

    Article  CAS  PubMed  Google Scholar 

  12. Nan H, Lee SW, Kang SH (2012) Fast screening of rice knockout mutants by multi-channel microchip electrophoresis. Talanta 97:249–255

    Article  CAS  PubMed  Google Scholar 

  13. Zhang P, Park G, Kang SH (2014) Fast high-throughput screening of the H1N1 virus by parallel detection with multi-channel microchip electrophoresis. Bull Korean Chem Soc 35:1082–1086

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A2A2A01013466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Ho Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Zhang, P., Nan, H., Lee, S., Kang, S.H. (2015). Fast High-Throughput Screening of H1N1 Virus by Parallel Detection with Multichannel Microchip Electrophoresis. In: Van Schepdael, A. (eds) Microchip Capillary Electrophoresis Protocols. Methods in Molecular Biology, vol 1274. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2353-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2353-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2352-6

  • Online ISBN: 978-1-4939-2353-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics