Skip to main content

An Overview of the Use of Microchips in Electrophoretic Separation Techniques: Fabrication, Separation Modes, Sample Preparation Opportunities, and On-Chip Detection

  • Protocol
  • First Online:
Microchip Capillary Electrophoresis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1274))

Abstract

This chapter is intended as a basic introduction to microchip-based capillary electrophoresis to set the scene for newcomers and give pointers to reference material.

An outline of some commonly used setups and key concepts is given, many of which are explored in greater depth in later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li SFY (1992) Capillary electrophoresis: principles, practice and applications. Elsevier, Amsterdam

    Google Scholar 

  2. Landers JP (2008) Handbook of capillary and microchip electrophoresis and associated microtechniques. CRC, Boca Raton

    Google Scholar 

  3. Hjertén S (1967) Free zone electrophoresis. Chromatogr Rev 9:122–219

    PubMed  Google Scholar 

  4. Jorgensen JW, Lukacs KD (1981) Zone electrophoresis in open-tubular glass capillaries. Anal Chem 53:1298–1302

    Google Scholar 

  5. Jorgensen JW, Lukacs KD (1981) High resolution separations based on electrophoresis and electroosmosis. J Chromatogr 218:209–216

    Google Scholar 

  6. Jorgensen JW, Lukacs KD (1981) Zone electrophoresis in open-tubular glass capillaries: preliminary data on performance. J High Resolut Chromatogr 4:230–231

    Google Scholar 

  7. Fercher G, Haller A, Smetana W et al (2010) Ceramic capillary electrophoresis chip for the measurement of inorganic ions in water samples. Analyst 135:965–970

    CAS  PubMed  Google Scholar 

  8. Lamalle C, Marini RDA, Debrus B et al (2012) Development of a generic micellar electrokinetic chromatography method for the separation of 15 antimalarial drugs as a tool to detect medicine counterfeiting. Electrophoresis 33:1669–1678

    PubMed  Google Scholar 

  9. Wu R, Wang Z, Zhao W et al (2013) Multi-dimension microchip-capillary electrophoresis device for determination of functional proteins in infant milk formula. J Chromatogr A 1304:220–226

    CAS  PubMed  Google Scholar 

  10. Hopwood A, Hurth C, Yang J et al (2010) Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile. Anal Chem 82:6991–6999

    CAS  PubMed  Google Scholar 

  11. Vaculovicova M, Smerkova K, Sedlacek J et al (2013) Integrated chip electrophoresis and magnetic particle isolation used for detection of hepatitis B virus oligonucleotides. Electrophoresis 34:1548–1554

    CAS  PubMed  Google Scholar 

  12. Jung JH, Kim GY, Seo TS (2011) An integrated passive micromixer-magnetic separation-capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level. Lab Chip 11:3465–3470

    CAS  PubMed  Google Scholar 

  13. Xu CX, Yin XF (2011) Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfluidic chips with hydrodynamic focusing. J Chromatogr A 1218:726–732

    CAS  PubMed  Google Scholar 

  14. Harrison DJ, Fluri K, Seiler K et al (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897

    CAS  PubMed  Google Scholar 

  15. Harrison DJ, Manz A, Fan Z et al (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64:1926–1932

    CAS  Google Scholar 

  16. Seiler K, Harrison DJ, Manz A (1993) Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency. Anal Chem 65:1481–1488

    CAS  Google Scholar 

  17. Effenhauser CS, Manz A, Widmer HM (1993) Glass chips for high-speed capillary electrophoresis separation with submicrometer plate heights. Anal Chem 65:2637–2642

    CAS  Google Scholar 

  18. Felhofer JL, Blanes L, Garcia CD (2010) Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 31:2469–2486

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Wu D, Qin J, Lin B (2008) Electrophoretic separations on microfluidic chips. J Chromatogr A 1184:542–559

    CAS  PubMed  Google Scholar 

  20. Kraly JR, Holcomb RE, Guan Q et al (2009) Microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta 653:23–35

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Chen G, Lin Y, Wang J (2006) Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta 68:497–503

    CAS  PubMed  Google Scholar 

  22. Verpoorte E (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23:677–712

    CAS  PubMed  Google Scholar 

  23. Nuchtavorn N, Smejkal P, Breadmore MC et al (2013) Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis. J Chromatogr A 1286:216–221

    CAS  PubMed  Google Scholar 

  24. Fouad M, Jabasini M, Kaji N et al (2008) Microchip analysis of plant glucosinolates. Electrophoresis 29:2280–2287

    CAS  PubMed  Google Scholar 

  25. Miyado T, Wakida S, Aizawa H et al (2008) High-throughput assay of nitric oxide metabolites in human plasma without deproteinization by lab-on-a-chip electrophoresis using a zwitterionic additive. J Chromatogr A 1206:41–44

    CAS  PubMed  Google Scholar 

  26. Schulze M, Belder D (2011) Poly(ethylene glycol)-coated microfluidic devices for chip electrophoresis. Electrophoresis 33:370–378

    Google Scholar 

  27. Liang RP, Meng XY, Liu CM et al (2011) PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis 32:3331–3340

    CAS  PubMed  Google Scholar 

  28. Alvarez-Martos I, Fernàndez-Abedul MT, Anillo A et al (2012) Poly (acrylic acid) microchannel modification for the enhanced resolution of catecholamines microchip electrophoresis with electrochemical detection. Anal Chim Acta 724:136–143

    CAS  PubMed  Google Scholar 

  29. Chen Y, Duan H, Zhang L et al (2008) Fabrication of PMMA CE microchips by infrared-assisted polymerization. Electrophoresis 29:4922–4927

    CAS  PubMed  Google Scholar 

  30. Huang FC, Chen YF, Lee GB (2007) CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods. Electrophoresis 28:1130–1137

    CAS  PubMed  Google Scholar 

  31. Ito T, Inoue A, Sato K et al (2005) Autonomous polymer loading and sample injection for microchip electrophoresis. Anal Chem 77:4759–4764

    CAS  PubMed  Google Scholar 

  32. Lee NY, Yamada M, Seki M (2005) Control-free air vent system for ultra-low volume sample injection on a microfabricated device. Anal Sci 21:465–468

    CAS  PubMed  Google Scholar 

  33. Ono K, Kaneda S, Fujii T (2013) Single-step CE for miniaturized and easy-to-use system. Electrophoresis 34:903–910

    CAS  PubMed  Google Scholar 

  34. Chen Y, Choi JY, Choi SJ et al (2010) Sample stacking capillary electrophoretic microdevice for highly sensitive mini Y short tandem repeat genotyping. Electrophoresis 31:2974–2980

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Park S, Yang S et al (2010) An all-in-one microfluidic device for parallel DNA extraction and gene analysis. Biomed Microdevices 12:1043–1049

    CAS  PubMed  Google Scholar 

  36. Hsiung SK, Lee CH, Lee GB (2008) Microcapillary electrophoresis chips utilizing controllable micro-lens structures and buried optical fibers for on-line optical detection. Electrophoresis 29:1866–1873

    CAS  PubMed  Google Scholar 

  37. Castaño-Álvarez M, Fernández-la-Villa A, Pozo-Ayuso DF et al (2009) Multiple-point electrochemical detection for a dual-channel hybrid PDMS-glass microchip electrophoresis device. Electrophoresis 30:3372–3380

    PubMed  Google Scholar 

  38. Wu D, Wu J, Zhu YH et al (2010) An electrically heated Au electrode for electrochemical detection in microchip system. Electroanalysis 22:1217–1222

    CAS  Google Scholar 

  39. Breadmore MC (2012) Capillary and microchip electrophoresis: challenging the common conceptions. J Chromatogr A 1221:42–55

    CAS  PubMed  Google Scholar 

  40. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576

    CAS  PubMed  Google Scholar 

  41. Shang F, Guihen E, Glennon JD (2012) Recent advances in miniaturisation – the role of microchip electrophoresis in clinical analysis. Electrophoresis 33:105–116

    CAS  PubMed  Google Scholar 

  42. Kitagawa F, Otsuka K (2011) Recent progress in microchip electrophoresis-mass spectrometry. J Pharm Biomed Anal 55:668–678

    CAS  PubMed  Google Scholar 

  43. Coltro WK, de Jesus DP, da Silva JA et al (2010) Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis 31:2487–2498

    CAS  PubMed  Google Scholar 

  44. Gabriel EF, do Lago CL, Gobbi AL et al (2013) Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner. Electrophoresis 34:2169–2176

    CAS  PubMed  Google Scholar 

  45. Baker CA, Roper MG (2010) A continuous-flow, microfluidic fraction collection device. J Chromatogr A 1217:4743–4748

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Tay ET, Law WS, Li SF et al (2009) Microchip capillary electrophoresis. Methods Mol Biol 509:159–168

    CAS  PubMed  Google Scholar 

  47. Nickcevic I, Lee SH, Piruska A et al (2007) Characterization and performance of injection molded poly(methylmethacrylate) microchips for capillary electrophoresis. J Chromatogr A 1154:444–453

    Google Scholar 

  48. Yap YC, Guijt RM, Dickson TC et al (2013) Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation. Anal Chem 85:10051–10056

    CAS  PubMed  Google Scholar 

  49. Kricka LJ, Fortina P, Panaro NJ et al (2002) Fabrication of plastic microchips by hot embossing. Lab Chip 2:1–4

    CAS  PubMed  Google Scholar 

  50. Liu C, Cui D, Cai H et al (2006) A rigid poly(dimethylsiloxane) sandwich electrophoresis microchip based on thin-casting method. Electrophoresis 27:2917–2923

    CAS  PubMed  Google Scholar 

  51. Sun X, Peeni BA, Yang W et al (2007) Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding. J Chromatogr A 1162:162–166

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Chen Z, Zhang L, Chen G (2007) Fabrication and performance of fiber electrophoresis microchips. Electrophoresis 28:2466–2473

    CAS  PubMed  Google Scholar 

  53. Martinsson H, Sandstrom T, Bleeker AJ et al (2005) Current status of optical maskless lithography. J Microlithogr. doi:10.1117/1.1862649

    Google Scholar 

  54. Truckenmüller R, Giselbrecht S, van Blitterswijk CA et al (2008) Flexible fluidic microchips based on thermoformed and locally modified thin polymer films. Lab Chip 8:1570–1579

    PubMed  Google Scholar 

  55. Shameli SM, Elbuken C, Ou J et al (2011) Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection. Electrophoresis 32:333–339

    CAS  PubMed  Google Scholar 

  56. Beh CW, Zhou W, Wang TH (2012) PDMS-glass bonding using grafted polymeric adhesive – alternative process flow for compatibility with patterned biological molecules. Lab Chip 12:4120–4127

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Krikku P, Grass B, Hokkanen A et al (2004) Isotachophoresis of beta-blockers in a capillary and on a poly(methyl methacrylate) chip. Electrophoresis 25:1687–1694

    Google Scholar 

  58. Jacobson SC, Hergenroder R, Koutny LB et al (1994) High-speed separations on a microchip. Anal Chem 66:1114–1118

    CAS  Google Scholar 

  59. Jacobson SC, Culbertson CT, Daler JE et al (1998) Microchip structures for submillisecond electrophoresis. Anal Chem 70:3476–3480

    CAS  Google Scholar 

  60. Grass B, Hergenröder R, Neyer A et al (2002) Determination of selenoamino acids by coupling of isotachophoresis/capillary zone electrophoresis on a PMMA-microchip. J Sep Sci 25:135–140

    CAS  Google Scholar 

  61. Weiller BH, Ceriotti L, Shibata T et al (2002) Analysis of lipoproteins by capillary zone electrophoresis in microfluidic devices: assay development and surface roughness measurements. Anal Chem 74:1702–1711

    CAS  PubMed  Google Scholar 

  62. Mao X, Wang K, Du Y et al (2003) Analysis of chicken and turkey ovalbumins by microchip electrophoresis combined with exoglycosidase digestion. Electrophoresis 24:3273–3278

    CAS  PubMed  Google Scholar 

  63. Mao X, Chu IK, Lin B (2006) A sheath-flow nanoelectrospray interface of microchip electrophoresis MS for glycoprotein and glycopeptide analysis. Electrophoresis 27:5059–5067

    CAS  PubMed  Google Scholar 

  64. Wang Z, Wang W, Wang W et al (2011) Separation and determination of β-casomorphins by using glass microfluidic chip electrophoresis together with laser-induced fluorescence detection. J Sep Sci 34:196–201

    CAS  PubMed  Google Scholar 

  65. Atalay Y, Verboven P, Vermeir S et al (2009) Modeling and optimization of a multi-enzyme electrokinetically driven multiplexed microchip for simultaneous detection of sugars. Microfluid Nanofluid 7:393–406

    CAS  Google Scholar 

  66. Sukas S, De Malsche W, Desmet G et al (2012) Performance evaluation of different design alternatives for microfabricated nonporous fused silica pillar columns for capillary electrochromatography. Anal Chem 84:9996–10004

    CAS  PubMed  Google Scholar 

  67. Kasicka V (2012) Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis 33:48–73

    CAS  PubMed  Google Scholar 

  68. Jemere AB, Martinez D, Finot M et al (2009) Capillary electrochromatography with packed bead beds in microfluidic devices. Electrophoresis 30:4237–4244

    CAS  PubMed  Google Scholar 

  69. Ladner Y, Crétier G, Faure K (2012) Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: a cost-effective and easy-to-use technology. Electrophoresis 33:3087–3094

    CAS  PubMed  Google Scholar 

  70. Culbertson CT, Jacobson SC, Ramsey JM (2000) Microchip devices for high-efficiency separations. Anal Chem 72:5814–5819

    CAS  PubMed  Google Scholar 

  71. Skelley AM, Scherer JR, Aubrey AD et al (2005) Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proc Natl Acad Sci U S A 102:1041–1046

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Hompesch RW, García CD, Weiss DJ et al (2005) Analysis of natural flavonoids by microchip-micellar electrokinetic chromatography with pulsed amperometric detection. Analyst 130:694–700

    CAS  PubMed  Google Scholar 

  73. Newman CI, Giordano BC, Copper CL et al (2008) Microchip micellar electrokinetic chromatography separation of alkaloids with UV-absorbance spectral detection. Electrophoresis 29:803–810

    CAS  PubMed  Google Scholar 

  74. Du Y, Wang E (2008) Separation and detection of narcotic drugs on a microchip using micellar electrokinetic chromatography and electrochemiluminescence. Electrophoresis 20:643–647

    CAS  Google Scholar 

  75. Wallenborg SR, Bailey CG (2000) Separation and detection of explosives on a microchip using micellar electrokinetic chromatography and indirect laser-induced fluorescence. Anal Chem 72:1872–1878

    CAS  PubMed  Google Scholar 

  76. Smirnova A, Shimura K, Hibara A et al (2008) Pesticide analysis by MEKC on a microchip with hydrodynamic injection from organic extract. J Sep Sci 31:904–908

    CAS  PubMed  Google Scholar 

  77. Hong JW, Hosokawa K, Fujii T et al (2001) Microfabricated polymer chip for capillary gel electrophoresis. Biotechnol Prog 17:958–962

    CAS  PubMed  Google Scholar 

  78. Oh D, Cheong IC, Lee HG et al (2010) Fast microchip electrophoresis using field strength gradients for single nucleotide polymorphism identification of cattle breeds. Bull Korean Chem Soc 31:1902–1906

    CAS  Google Scholar 

  79. Liu D, Ou Z, Xu M et al (2008) Simplified transient isotachophoresis/capillary gel electrophoresis method for highly sensitive analysis of polymerase chain reaction samples on a microchip with laser-induced fluorescence detection. J Chromatogr A 1214:165–170

    CAS  PubMed  Google Scholar 

  80. Coisson JD, Cereti E, Garino C et al (2010) Microchip capillary electrophoresis (Lab-on-chip®) improves detection of celery (Apium graveolens L.) and sesame (Sesamum indicum L.) in foods. Food Res Int 43:1237–1243

    CAS  Google Scholar 

  81. Okada H, Kaji N, Tokeshi M et al (2008) Highly sensitive double-fluorescent dye staining on microchip electrophoresis for analysis of milk proteins. Electrophoresis 29:2533–2538

    CAS  PubMed  Google Scholar 

  82. Shimura K (2009) Recent advances in IEF in capillary tubes and microchips. Electrophoresis 30:11–28

    CAS  PubMed  Google Scholar 

  83. Sueyoshi K, Kitagawa F, Otsuka K (2008) Recent progress of online sample preconcentration techniques in microchip electrophoresis. J Sep Sci 31:2650–2666

    CAS  PubMed  Google Scholar 

  84. Wägli P, Chang YC, Homsy A et al (2013) Microfluidic droplet-based liquid-liquid extraction and on-chip IR spectroscopy detection of cocaine in human saliva. Anal Chem 85:7558–7565

    PubMed  Google Scholar 

  85. Petersen NJ, Jensen H, Hansen SH et al (2010) On-chip electro membrane extraction. Microfluid Nanofluid 9:881–888

    CAS  Google Scholar 

  86. Yu C, Davey MH, Svec F et al (2001) Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem 73:5088–5096

    CAS  PubMed  Google Scholar 

  87. Yang Y, Li C, Lee KH et al (2005) Coupling on-chip solid-phase extraction to electrospray mass spectrometry through an integrated electrospray tip. Electrophoresis 26:3622–3630

    CAS  PubMed  Google Scholar 

  88. Ramsey JD, Collins GE (2005) Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Anal Chem 77:6664–6670

    CAS  PubMed  Google Scholar 

  89. Svobodova Z, Mohamadi MR, Jankovicova B et al (2012) Development of a magnetic immunosorbent for on-chip preconcentration of amyloid β isoforms: representatives of Alzheimer’s disease biomarkers. Biomicrofluidics 6:24126–2412612

    PubMed  Google Scholar 

  90. Hoeman KW, Lange JJ, Roman GT et al (2009) Electrokinetic trapping using titania nanoporous membranes fabricated using sol-gel chemistry on microfluidic devices. Electrophoresis 30:3160–3167

    CAS  PubMed  Google Scholar 

  91. Lee JH, Cosgrove BD, Lauffenburger DA (2009) Microfluidic concentration-enhanced cellular kinase activity assay. J Am Chem Soc 131:10340–10341

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Guan Q, Henry CS (2009) Improving MCE with electrochemical detection using a bubble cell and sample stacking techniques. Electrophoresis 30:3339–3346

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Zhang Y, Ping G, Zhu B et al (2007) Enhanced electrophoretic resolution of monosulfate glycosaminoglycan disaccharide isomers on poly(methylmethacrylate) chips. Electrophoresis 28:414–421

    CAS  PubMed  Google Scholar 

  94. Wang J, Zhang Y, Okamoto Y et al (2011) Online transient isotachophoresis concentration by the pseudo-terminating electrolyte buffer for the separation of DNA-aptamer and its thrombin complex in poly(methyl methacrylate) microchip. Analyst 136:1142–1147

    CAS  PubMed  Google Scholar 

  95. Pan Q, Zhao M, Liu S (2009) Combination of on-chip field amplification and bovine serum albumin sweeping for ultrasensitive detection of green fluorescent protein. Anal Chem 81:5333–5341

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Ptolemy AS, Britz-McKibbin P (2008) New advances in on-line sample preconcentration by capillary electrophoresis using dynamic pH junction. Analyst 133:1643–1648

    CAS  PubMed  Google Scholar 

  97. Herr AE, Molho JI, Drouvalakis KA et al (2003) On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations. Anal Chem 75:1180–1187

    CAS  PubMed  Google Scholar 

  98. Balss KM, Ross D, Begley HC et al (2004) DNA hybridization assays using temperature gradient focusing and peptide nucleic acids. J Am Chem Soc 126:13474–13479

    CAS  PubMed  Google Scholar 

  99. Kelly RT, Woolley AT (2005) Electric field gradient focusing. J Sep Sci 28:1985–1993

    CAS  PubMed  Google Scholar 

  100. Ma B, Zhang G, Qin J et al (2009) Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9:232–238

    CAS  PubMed  Google Scholar 

  101. Wu HM, Sui G, Lee CC et al (2007) In vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device. J Nucl Med 48:837–845

    CAS  PubMed  Google Scholar 

  102. Ro KW, Lim K, Kim H et al (2002) Poly(dimethylsiloxane) microchip for precolumn reaction and micellar electrokinetic chromatography of biogenic amines. Electrophoresis 23:1129–1137

    CAS  PubMed  Google Scholar 

  103. Bromberg A, Mathies RA (2003) Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip. Anal Chem 75:1188–1195

    CAS  PubMed  Google Scholar 

  104. Ye F, Liu J, Huang Y et al (2013) Competitive immunoassay of progesterone by microchip electrophoresis with chemiluminescence detection. J Chromatogr B 936:74–79

    CAS  Google Scholar 

  105. Kim AR, Kim JY, Choi K et al (2013) On-chip immunoassay of a cardiac biomarker in serum using a polyester-toner microchip. Talanta 109:20–25

    CAS  PubMed  Google Scholar 

  106. Cheng SB, Skinner CD, Taylor J et al (2001) Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. J Anal Chem 73:1472–1479

    CAS  Google Scholar 

  107. Li HF, Lin JM, Su RG et al (2004) A compactly integrated laser-induced fluorescence detector for microchip electrophoresis. Electrophoresis 25:1907–1915

    CAS  PubMed  Google Scholar 

  108. Schulze P, Ludwig M, Kohler F et al (2005) Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis. Anal Chem 77:1325–1329

    CAS  PubMed  Google Scholar 

  109. Johnson ME, Landers JP (2004) Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems. Electrophoresis 25:3513–3527

    CAS  PubMed  Google Scholar 

  110. Young KC, Lien HM, Lin CC et al (2002) Microchip and capillary electrophoresis for quantitative analysis of hepatitis C virus based on RT-competitive PCR. Talanta 56:323–330

    CAS  PubMed  Google Scholar 

  111. Huang Y, Zhao S, Shi M et al (2011) Competitive immunoassay of phenobarbital by microchip electrophoresis with laser induced fluorescence detection. Anal Chim Acta 694:162–166

    CAS  PubMed  Google Scholar 

  112. Ma B, Zhou X, Wang G et al (2006) Integrated isotachophoretic preconcentration with zone electrophoresis separation on a quartz microchip for UV detection of flavonoids. Electrophoresis 27:4904–4909

    CAS  PubMed  Google Scholar 

  113. Gustafsson O, Mogensen KB, Ohlsson PD et al (2008) An electrochromatography chip with integrated waveguide for UV absorbance detection. J Micromech Microeng 18:055021–055027

    Google Scholar 

  114. Lu Q, Copper CL, Collins GE (2006) Ultraviolet absorbance detection of colchicine and related alkaloids on a capillary electrophoresis microchip. Anal Chim Acta 572:205–211

    CAS  PubMed  Google Scholar 

  115. Lee HL, Chen SC (2004) Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum. Talanta 64:750–757

    CAS  PubMed  Google Scholar 

  116. Wang J, Chatrathi MP, Collins GE (2007) Simultaneous microchip enzymatic measurements of blood lactate and glucose. Anal Chim Acta 585:11–16

    CAS  PubMed  Google Scholar 

  117. Fanguy JC, Henry CS (2002) The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection. Electrophoresis 23:767–773

    CAS  PubMed  Google Scholar 

  118. Alves Brito-Neto JG, Fracassi da Silva JA, Blanes L et al (2005) Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 1. Fundamentals. Electroanalysis 17:1198–1206

    Google Scholar 

  119. Kubáň P, Hauser PC (2005) Application of an external contactless conductivity detector for the analysis of beverages by microchip capillary electrophoresis. Electrophoresis 26:3169–3178

    PubMed  Google Scholar 

  120. Abad-Villar EM, Kubáň P, Hauser PC (2005) Determination of biochemical species on electrophoresis chips with an external contactless conductivity detector. Electrophoresis 26:3609–3614

    CAS  PubMed  Google Scholar 

  121. Tachibana Y, Otsuka K, Terabe S et al (2004) Effects of the length and modification of the separation channel on microchip electrophoresis-mass spectrometry for analysis of bioactive compounds. J Chromatogr A 1025:287–296

    CAS  PubMed  Google Scholar 

  122. Mechref Y (2011) Analysis of glycans derived from glycoconjugates by capillary electrophoresis-mass spectrometry. Electrophoresis 32:3467–3481

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Fritzsche S, Hoffmann P, Belder D (2010) Chip electrophoresis with mass spectrometric detection in record speed. Lab Chip 10:1227–1230

    CAS  PubMed  Google Scholar 

  124. Shinohara H, Suzuki T, Kitagawa F et al (2008) Polymer microchip integrated with nano-electrospray tip for electrophoresis-mass spectrometry. Sens Actuat B 132:368–373

    CAS  Google Scholar 

  125. Tachibana Y, Otsuka K, Terabe S et al (2003) Robust and simple interface for microchip electrophoresis-mass spectrometry. J Chromatogr A 1011:181–192

    CAS  PubMed  Google Scholar 

  126. Kameoka J, Orth R, Ilic B et al (2002) An electrospray ionization source for integration with microfluidics. Anal Chem 74:5897–5901

    CAS  PubMed  Google Scholar 

  127. Trumbull JD, Glasgow IK, Beebe DJ et al (2000) Integrating microfabricated fluidic systems and NMR spectroscopy. IEEE Trans Biomed Eng 47:3–7

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deirdre Cabooter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Hendrickx, S., de Malsche, W., Cabooter, D. (2015). An Overview of the Use of Microchips in Electrophoretic Separation Techniques: Fabrication, Separation Modes, Sample Preparation Opportunities, and On-Chip Detection. In: Van Schepdael, A. (eds) Microchip Capillary Electrophoresis Protocols. Methods in Molecular Biology, vol 1274. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2353-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2353-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2352-6

  • Online ISBN: 978-1-4939-2353-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics