Skip to main content

QM/MM Methods for Studying Enzymatic Reactions of Glycosyltransferases

  • Protocol
  • First Online:
Glycoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1273))

Abstract

Hybrid quantum mechanics and molecular mechanics (QM/MM) methods have become a powerful tool to provide an accurate and effective description of complex biological systems. The QM treatment of the electronic structure of an active site region and the rest of the enzyme by molecular mechanics allows enzymatic reaction to being modeled with including the impact of environment. Different reaction pathways of the enzymatic mechanism can be tested—transition states (TS) and intermediates characterized using QM/MM methods, leading to significant advances in understanding enzymatic reactions. This chapter discusses the ideas and the setting up of the structural and computational models for calculations with QM/MM software. The use of QM/MM methodology is also illustrated using the case of the inverting glycosyltransferase GnT-I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyer TA, Sadler JE, Rearick JI, Paulson JC, Hill RL (1981) Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv Enzymol 52:23–175

    CAS  PubMed  Google Scholar 

  2. Schachter H (1991) Enzymes associated with glycosylation. Curr Opin Struct Biol 1:755–765

    Article  CAS  Google Scholar 

  3. Kleene R, Berger EG (1993) The molecular and cell biology of glycosyltransferases. Biochim Biophys Acta 1154:283–325

    Article  CAS  PubMed  Google Scholar 

  4. Montreuil J, Vliegenthart JFG, Schachter H (1995) Glycoproteins. In: Neuberger A, van Deenen LLM (eds) New comprehensive biochemistry, vol 29a. Elsevier, Amsterdam

    Google Scholar 

  5. Vocadlo DJ, Davies GJ (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12:539–555

    Article  CAS  PubMed  Google Scholar 

  6. Tvaroška I (2005) Structural insights into the catalytic mechanism and transition state of glycosyltransferases using ab initio molecular modeling. Trends Glycosci Glycotech 17:177–190

    Article  Google Scholar 

  7. Tvaroška I (2006) Molecular modeling of retaining glycosyltransferases. In: Vliegenthart JFG, Woods RJ (eds) NMR Spectroscopy and computer modeling of carbohydrates, vol 930, ACS Symposium Series. Washington, DC, ACS, pp 285–301

    Chapter  Google Scholar 

  8. Wilson IBH, Breton CH, Imberty A, Tvaroška I (2008) Molecular basis for the biosynthesis of oligo- and polysaccharides. In: Fraser-Reid BO, Tatsuta K, Thiem J, Coté GL, Flitsch S, Ito Y, Kondo H, Nishimura S-I, Yu B (eds) Glycoscience chemistry and chemical biology. Springer, New York, NY, pp 2267–2323. ISBN ISBN: 978-3-540-36154-1

    Google Scholar 

  9. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  PubMed  Google Scholar 

  10. Tvaroška I, André I, Carver JP (2000) Ab initio molecular orbital study of the catalytic mechanism of glycosyltransferases. Description of reaction pathways and determination of transition states structures for inverting N-acetylglucosaminyltransferases. J Am Chem Soc 122:8762–8776

    Article  Google Scholar 

  11. Tvaroška I, André I, Carver JP (2003) Catalytic mechanism of the inverting N-acetylglucosaminyltransferase I: DFT quantum mechanical study of the reaction pathway and determination of the transition state structure. Glycobiology 13:559–566

    Article  PubMed  Google Scholar 

  12. André I, Tvaroška I, Carver JP (2003) On the reaction pathways and determination of transition state structures for retaining α-galactosyltransferases. Carbohydr Res 338: 865–877

    Article  PubMed  Google Scholar 

  13. Tvaroška I (2004) Molecular modeling insights into the catalytic mechanism of the retaining galactosyltransferase LgtC. Carbohydr Res 339:1007–1014

    Article  PubMed  Google Scholar 

  14. Lin H, Truhlar DG (2007) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

  15. Senn HM, Thiel W (2007) QM/MM studies of enzymes. Curr Opin Chem Biol 11:182–187

    Article  CAS  PubMed  Google Scholar 

  16. Senn HM, Thiel W (2007) QM/MM methods for biological systems. Top Curr Chem 268:173–290

    Article  CAS  Google Scholar 

  17. Hu H, Yang W (2008) Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu Rev Phys Chem 59:573–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  19. Tvaroška I (2011) QM/MM insight on enzymatic reactions of glycosyltransferases. Mini Rev Org Chem 8:263–269

    Article  Google Scholar 

  20. Hu LH, Eliasson J, Heimdal J, Ryde U (2009) Do quantum mechanical energies calculated for small models of protein-active sites converge? J Phys Chem A 113:11793–11800

    Article  CAS  PubMed  Google Scholar 

  21. http://www.Gaussian.com

  22. http://www.scm.com

  23. http://www.cse.clrc.ac.uk/qcg/games-uk

  24. http://www.chem.ac.ru/Chemistry/Soft/MOZYME.en.html

  25. http://www.schrodinger.com

  26. http://www.amber.scripps.edu

  27. http://www.charmm.org

  28. http://www.cse.clrc.ac.uk/qcg/chemshell

  29. http://www.pdb.org

  30. Modeller, A program for protein structure modeling, http://salilab.org/modeller/modeller.html

  31. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605

    Article  CAS  PubMed  Google Scholar 

  32. (2009) Maestro version 9.0, New York, NY: Schrödinger, LLC

    Google Scholar 

  33. Schrödinger Suite (2009) Protein preparation wizard, Epik version 2.0, New York, NY: Schrödinger, LLC

    Google Scholar 

  34. Morris GM, Lim-Wilby M (2008) Molecular docking. In: Kukol A (ed) Methods in molecular biology, vol 443. Humana Press, Totowa, NJ, pp 365–382

    Google Scholar 

  35. Sumovski CV, Ochsenfeld C (2009) A convergence study of QM/MM isomerization energies with the selected size of the QM |region for peptidic systems. J Phys Chem A 113:11734–11741

    Article  Google Scholar 

  36. Hu LH, Söderhjelm P, Ryde U (2011) On the convergence of QM/MM energies. J Chem Theor Comput 7:761–777

    Article  CAS  Google Scholar 

  37. Xu X, Alecu IM, Truhlar DG (2011) How well can modern density functionals predict internuclear distances at transition state? J Chem Theor Comput 7:1667–1676

    Article  CAS  Google Scholar 

  38. Kóňa J, Tvaroška I (2009) Comparative DFT study on the glycosidic bond in reactive species of galactosyl diphosphates. Chem Papers 63:598–607

    Google Scholar 

  39. Kozmon S, Tvaroška I (2006) Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the Inverting N-acetylglucosaminyltransferase I. J Am Chem Soc 128:16921–16927

    Article  CAS  PubMed  Google Scholar 

  40. Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM (2000) X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J 19:5269–5280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Schachter H, Reck F, Paulsen H (2003) Use of synthetic oligosaccharide substrate analogs to map the active sites of N-acetylglucosaminyltransferases I and II. Methods Enzymol 363: 459–475

    Article  CAS  PubMed  Google Scholar 

  42. (2009) Glide version 5.5, New York, NY: Schrödinger, LLC

    Google Scholar 

  43. SCM (2005) ADF 2005.01, Amsterdam

    Google Scholar 

  44. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Grant Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences (grants VEGA-02/0176/09 and VEGA-02/0101/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Tvaroška .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tvaroška, I. (2015). QM/MM Methods for Studying Enzymatic Reactions of Glycosyltransferases. In: Lütteke, T., Frank, M. (eds) Glycoinformatics. Methods in Molecular Biology, vol 1273. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2343-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2343-4_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2342-7

  • Online ISBN: 978-1-4939-2343-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics