Skip to main content

Structures of Glycans Bound to Receptors from Saturation Transfer Difference (STD) NMR Spectroscopy: Quantitative Analysis by Using CORCEMA-ST

  • Protocol
  • First Online:
Glycoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1273))

Abstract

Glycan–receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan–receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody–glycan interaction is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabius HJ (2009) The sugar code: fundamentals of glycosciences. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  2. Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    Article  CAS  PubMed  Google Scholar 

  3. García-Herrero A, Montero E, Muñoz JL, Espinosa JF, Vián A, García JL, Asensio JL, Cañada FJ, Jiménez-Barbero J (2002) Conformational selection of glycomimetics at enzyme catalytic sites: experimental demonstration of the binding of distinct high-energy distorted conformations of C-, S-, and O-glycosides by E. coli β-galactosidases. J Am Chem Soc 124:4804–4810

    Article  PubMed  Google Scholar 

  4. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38:1784–1788

    Article  CAS  Google Scholar 

  5. Meyer B, Peters T (2003) NMR Spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42:864–890

    Article  CAS  Google Scholar 

  6. Angulo J, Nieto P (2011) STD-NMR: application to transient interactions between biomolecules—a quantitative approach. Eur Biophys J 40:1357–1369

    Article  CAS  PubMed  Google Scholar 

  7. Peng JW, Moore J, Abdul-Manan N (2004) NMR experiments for lead generation in drug discovery. Prog Nucl Magn Reson Spectrosc 44:225–256

    Article  CAS  Google Scholar 

  8. Viegas A, Manso JO, Nobrega FL, Cabrita EJ (2011) Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J Chem Educ 88:990–994

    Article  CAS  Google Scholar 

  9. Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117

    Article  CAS  PubMed  Google Scholar 

  10. Angulo J, Enríquez-Navas PM, Nieto PM (2010) Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates. Chem Eur J 16:7803–7812

    Article  CAS  PubMed  Google Scholar 

  11. Fielding L (2007) NMR methods for the determination of protein-ligand dissociation constants. Prog Nucl Magn Reson Spectrosc 51:219–242

    Article  CAS  Google Scholar 

  12. Jayalakshmi V, Krishna NR (2002) Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. J Magn Reson 155:106–118

    Article  CAS  PubMed  Google Scholar 

  13. Rama Krishna N, Jayalakshmi V (2006) Complete relaxation and conformational exchange matrix analysis of STD-NMR spectra of ligand-receptor complexes. Prog Nucl Magn Reson Spectrosc 49:1–25

    Article  Google Scholar 

  14. Roldós V, Cañada FJ, Jiménez-Barbero J (2011) Carbohydrate–protein interactions: a 3D view by NMR. ChemBioChem 12:990–1005

    Article  PubMed  Google Scholar 

  15. Jayalakshmi V, Krishna NR (2004) CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities. J Magn Reson 168:36–45

    Article  CAS  PubMed  Google Scholar 

  16. Enríquez-Navas PM, Marradi M, Padro D, Angulo J, Penadés S (2011) A Solution NMR study of the interactions of oligomannosides and the anti-HIV-1 2G12 antibody reveals distinct binding modes for branched ligands. Chemistry 17:1547–1560

    Article  PubMed  Google Scholar 

  17. Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C, and 15N chemical shifts. J Biomol NMR 26:215–240

    Article  CAS  PubMed  Google Scholar 

  18. Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, Kunert R, Zhu P, Wormald MR, Stanfield RL, Roux KH, Kelly JW, Rudd PM, Dwek RA, Katinger H, Burton DR, Wilson IA (2003) Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065–2071

    Article  CAS  PubMed  Google Scholar 

  19. Kemper S, Patel MK, Errey JC, Davis BG, Jones JA, Claridge TDW (2010) Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments. J Magn Reson 203:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Cutting B, Shelke SV, Dragic Z, Wagner B, Gathje H, Kelm S, Ernst B (2007) Sensitivity enhancement in saturation transfer difference (STD) experiments through optimized excitation schemes. Magn Reson Chem 45:720–724

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from Spanish and Andalusian Governments (Grants CTQ2009-07168 and P07-FQM-02969, respectively), and EU (FEDER funds). P.M.E.-N. thanks Fundación Andaluza Progreso y Salud for financial support. C.G. thanks EU for a Marie Curie fellowship. J.C.M.G acknowledges CSIC for a JAE PhD fellowship, and J.A. acknowledges MICINN for a Ramon y Cajal contract. J.A. also acknowledges start-up funding from the Faculty of Science at UEA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Angulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Enríquez-Navas, P.M., Guzzi, C., Muñoz-García, J.C., Nieto, P.M., Angulo, J. (2015). Structures of Glycans Bound to Receptors from Saturation Transfer Difference (STD) NMR Spectroscopy: Quantitative Analysis by Using CORCEMA-ST. In: Lütteke, T., Frank, M. (eds) Glycoinformatics. Methods in Molecular Biology, vol 1273. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2343-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2343-4_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2342-7

  • Online ISBN: 978-1-4939-2343-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics