Skip to main content

G protein-Coupled Receptors: An Overview of Signaling Mechanisms and Screening Assays

  • Protocol
  • First Online:
Book cover G Protein-Coupled Receptor Screening Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1272))

Abstract

The existence of cellular receptors, a group of specialized biomolecules to which endogenous and exogenous compounds bind and exert an effect, is one of the most exciting aspects of cell biology. Among the different receptor types recognized today, G-protein-coupled receptors (GPCRs) constitute, undoubtedly, one of the most important classes, in part due to their versatility, but particularly, due to their central role in a multitude of physiological states. The unveiling of GPCR function and mode of action is a challenging task that prevails until our days, as the full potential of these receptors is far from being established. Such an undertaking calls for a joint effort of multidisciplinary teams that must combine state-of-the-art technologies with in-depth knowledge of cell biology to probe such specialized molecules. This review provides a concise coverage of the scientific progress that has been made in GPCR research to provide researchers with an updated overview of the field. A brief outline of the historical breakthroughs is followed by a discussion of GPCR signaling mechanisms and by a description of the role played by assay technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eglen RM, Bosse R, Reisine T (2007) Emerging concepts of guanine nucleotide-binding protein-coupled receptor (GPCR) function and implications for high throughput screening. Assay Drug Dev Technol 5:425–451

    Article  CAS  PubMed  Google Scholar 

  2. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10:47–60

    Article  CAS  PubMed  Google Scholar 

  3. Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hill SJ (2006) G-protein-coupled receptors: past, present and future. Br J Pharmacol 147:S27–S37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Drews J (2004) Timeline: Paul Ehrlich: Magister Mundi. Nat Rev Drug Discov 3:797–801

    Article  CAS  PubMed  Google Scholar 

  6. Maehle AH (2004) “Receptive substances”: John Newport Langley (1852–1925) and his path to a receptor theory of drug action. Med Hist 48:153–174

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rang HP (2006) The receptor concept: pharmacology’s big idea. Br J Pharmacol 147:S9–S16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahlquist RP (1973) Adrenergic receptors - personal and practical view. Perspect Biol Med 17:119–122

    Article  CAS  PubMed  Google Scholar 

  9. Stapleton MP (1997) Sir James Black and propranolol - the role of the basic sciences in the history of cardiovascular pharmacology. Tex Heart Inst J 24:336–342

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kresge N, Simoni RD, Hill RL, Earl W (2005) Sutherland’s discovery of cyclic adenine monophosphate and the second messenger system. J Biol Chem 280:e39 (Reprinted from J Biol Chem, vol 232, pg 1077–1092, 1958)

    CAS  Google Scholar 

  11. Rodbell M (1995) Signal-transduction evolution of an idea (Nobel lecture). Angew Chem 34:1420–1428

    Article  CAS  Google Scholar 

  12. Gilman AG (1995) G-proteins and regulation of adenylate-cyclase (Nobel-lecture). Angew Chem 34:1406–1419

    Article  CAS  Google Scholar 

  13. Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147:S46–S55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25:413–422

    Article  CAS  PubMed  Google Scholar 

  15. Delean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled Beta-adrenergic receptor. J Biol Chem 255:7108–7117

    CAS  Google Scholar 

  16. Benovic JL, Shorr RGL, Caron MG, Lefkowitz RJ (1984) The mammalian beta-2-adrenergic receptor-Purification and characterization. Biochemistry 23:4510–4518

    Article  CAS  PubMed  Google Scholar 

  17. Caron MG, Srinivasan Y, Pitha J, Kociolek K, Lefkowitz RJ (1979) Affinity chromatography of the beta-adrenergic receptor. J Biol Chem 254:2923–2927

    CAS  PubMed  Google Scholar 

  18. Lefkowitz RJ (2007) Seven transmembrane receptors - a brief personal retrospective. Biochim Biophys Acta Biomemb 1768:748–755

    Article  CAS  Google Scholar 

  19. Lefkowitz RJ (2007) Seven transmembrane receptors: something old, something new. Acta Physiol 190:9–19

    Article  CAS  Google Scholar 

  20. Dixon RAF, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    Article  CAS  PubMed  Google Scholar 

  21. Kobilka B (2013) The structural basis of G-protein-coupled receptor signaling (Nobel lecture). Angew Chem 52:6380–6388

    Article  CAS  Google Scholar 

  22. Kobilka BK (1995) Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal Biochem 231:269–271

    Article  CAS  PubMed  Google Scholar 

  23. Gether U, Lin SS, Kobilka BK (1995) Fluorescent labeling of purified beta(2) adrenergic-receptor-evidence of ligand-specific conformational changes. J Biol Chem 270:28268–28275

    Article  CAS  PubMed  Google Scholar 

  24. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28:397–406

    Article  CAS  PubMed  Google Scholar 

  25. Unger VM, Hargrave PA, Baldwin JM, Schertler GFX (1997) Arrangement of rhodopsin transmembrane alpha-helices. Nature 389:203–206

    Article  CAS  PubMed  Google Scholar 

  26. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  27. Day PW, Rasmussen SGF, Parnot C, Fung JJ, Masood A, Kobilka TS, Yao X-J, Choi H-J, Weis WI, Rohrer DK, Kobilka BK (2007) A monoclonal antibody for G protein-coupled receptor crystallography. Nat Methods 4:927–929

    Article  CAS  PubMed  Google Scholar 

  28. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Yao X-J, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta(2)-adrenergic receptor function. Science 318:1266–1273

    Article  CAS  PubMed  Google Scholar 

  29. Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta(2) adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  CAS  PubMed  Google Scholar 

  31. Schlyer S, Horuk R (2006) I want a new drug: G-protein-coupled receptors in drug development. Drug Discov Today 11:481–493

    Article  CAS  PubMed  Google Scholar 

  32. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    Article  PubMed  CAS  Google Scholar 

  33. Fredriksson R, Schioth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67:1414–1425

    Article  CAS  PubMed  Google Scholar 

  34. Park PSH, Lodowski DT, Palczewski K (2008) Activation of G protein-coupled receptors: beyond two-state models and tertiary conformational changes. Annu Rev Pharmacol Toxicol 48:107–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hendriks-Balk MC, Peters SLM, Michel MC, Alewijnse AE (2008) Regulation of G protein-coupled receptor signalling: focus on the cardiovascular system and regulator of G protein signalling proteins. Eur J Pharmacol 585:278–291

    Article  CAS  PubMed  Google Scholar 

  36. Drake MT, Shenoy SK, Lefkowitz RJ (2006) Trafficking of G protein-coupled receptors. Circ Res 99:570–582

    Article  CAS  PubMed  Google Scholar 

  37. Claing A, Laporte SA, Caron MG, Lefkowitz RJ (2002) Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Progr Neurobiol 66:61–79

    Article  CAS  Google Scholar 

  38. Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metabol 17:159–165

    Article  CAS  Google Scholar 

  39. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161:1219–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sewing A, Cawkill D (2007) High-throughput lead finding and optimisation for GPCR targets. In: Bourne H, Horuk R, Kuhnke J, Michel H (eds) GPCRs: from deorphanization to lead structure identification, vol 2, Ernst Schering foundation symposium proceedings. Springer, Heidelberg, pp 249–267. doi:10.1007/2789_2006_012

    Chapter  Google Scholar 

  41. Kostenis E, Waelbroeck M, Milligan G (2005) Techniques: promiscuous G alpha proteins in basic research and drug discovery. Trends Pharmacol Sci 26:595–602

    Article  CAS  PubMed  Google Scholar 

  42. Martins SAM, Trabuco JRC, Monteiro GA, Chu V, Conde JP, Prazeres DMF (2012) Towards the miniaturization of GPCR-based live-cell screening assays. Trends Biotechnol 30:566–574

    Article  CAS  PubMed  Google Scholar 

  43. Werry TD, Wilkinson GF, Willars GB (2003) Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+. Biochem J 374:281–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lefkowitz RJ, Cotecchia S, Samama P, Costa T (1993) Constitutive activity of receptors coupled to guanine-nucleotide regulatory proteins. Trends Pharmacol Sci 14:303–307

    Article  CAS  PubMed  Google Scholar 

  45. Alvarez-Curto E, Pediani JD, Milligan G (2010) Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors. Anal Bioanal Chem 398:167–180

    Article  CAS  PubMed  Google Scholar 

  46. Milligan G (2010) The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr Opinion Pharmacol 10:23–29

    Article  CAS  Google Scholar 

  47. Tobin AB, Butcher AJ, Kong KC (2008) Location, location, location … site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 29:413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  CAS  PubMed  Google Scholar 

  49. Smith NJ, Bennett KA, Milligan G (2011) When simple agonism is not enough: emerging modalities of GPCR ligands. Mol Cell Endocrinol 331:241–247

    Article  CAS  PubMed  Google Scholar 

  50. Scott CW, Peters MF (2010) Label-free whole-cell assays: expanding the scope of GPCR screening. Drug Discov Today 15:704–716

    Article  CAS  PubMed  Google Scholar 

  51. Schroder R, Janssen N, Schmidt J, Kebig A, Merten N, Hennen S, Muller A, Blattermann S, Mohr-Andra M, Zahn S, Wenzel J, Smith NJ, Gomeza J, Drewke C, Milligan G, Mohr K, Kostenis E (2010) Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat Biotechnol 28:943–950

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duarte Miguel F. Prazeres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Prazeres, D.M.F., Martins, S.A.M. (2015). G protein-Coupled Receptors: An Overview of Signaling Mechanisms and Screening Assays. In: Prazeres, D.M.F., Martins, S.A.M. (eds) G Protein-Coupled Receptor Screening Assays. Methods in Molecular Biology, vol 1272. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-2336-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2336-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-2335-9

  • Online ISBN: 978-1-4939-2336-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics