Skip to main content

Detection of Structural Waters and Their Role in Structural Dynamics of Rhodopsin Activation

  • Protocol
  • First Online:
Book cover Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1271))

Abstract

Conserved structural waters trapped within GPCRs may form water networks indispensable for GPCR’s signaling functions. Radiolysis-based hydroxyl radical footprinting (HRF) strategies coupled to mass spectrometry have been used to explore the structural waters within rhodopsin in multiple signaling states. These approaches, combined with 18O labeling, can be used to identify the locations of structural waters in the transmembrane region and measure rates of water exchange with bulk solvent. Reorganizations of structural waters upon activation of signaling can be explicitly observed with this approach, and this provides a unique look at the structural modules driving the signaling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang L, Chance MR (2011) Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting. Anal Chem 83:7234–7241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kiselar JG, Chance MR (2010) Future directions of structural mass spectrometry using hydroxyl radical footprinting. J Mass Spectrom 45:1373–1382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Konermann L, Stocks BB, Pan Y et al (2010) Mass spectrometry combined with oxidative labeling for exploring protein structure and folding. Mass Spectrom Rev 29:651–667

    CAS  PubMed  Google Scholar 

  4. Xu G, Chance MR (2007) Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev 107:3514–3543

    Article  CAS  PubMed  Google Scholar 

  5. Orban T, Jastrzebska B, Gupta S et al (2012) Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Structure 20:826–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Angel TE, Chance MR, Palczewski K (2009) Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proc Natl Acad Sci U S A 106:8555–8560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Angel TE, Gupta S, Jastrzebska B et al (2009) Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proc Natl Acad Sci U S A 106:14367–14372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hoskison TK, Wortmann RL (2006) Advances in the management of gout and hyperuricemia. Scand J Rheumatol 35:251–260

    Article  CAS  PubMed  Google Scholar 

  9. Okada T, Fujiyoshi Y, Silow M et al (2002) Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci U S A 99:5982–5987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hofmann KP, Scheerer P, Hildebrand PW et al (2009) A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 34:540–552

    Article  CAS  PubMed  Google Scholar 

  11. Padayatti PS, Wang L, Gupta S et al (2013) A hybrid structural approach to analyze ligand binding by the serotonin type 4 receptor (5-HT4). Mol Cell Proteomics 12:1259–1271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Orban T, Gupta S, Palczewski K et al (2010) Visualizing water molecules in transmembrane proteins using radiolytic labeling methods. Biochemistry 49:827–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gupta S, Sullivan M, Toomey J et al (2007) The beamline X28C of the center for synchrotron biosciences: a national resource for biomolecular structure and dynamics experiments using synchrotron footprinting. J Synchrotron Radiat 14:233–243

    Article  CAS  PubMed  Google Scholar 

  14. Papermaster DS (1982) Preparation of antibodies to rhodopsin and the large protein of rod outer segments. Methods Enzymol 81:240–246

    Article  CAS  PubMed  Google Scholar 

  15. Okada T, Tsujinimoto R, Muraoka M et al (2005) Methods and results in X ray crystallography of bovine rhodopsin, in G protein-couples receptors. In: Haga T (ed) Structure, function, and ligand screening. CRC Press LLC, Boca Raton, FL, pp 245–261

    Google Scholar 

  16. Jastrzebska B, Ringler P, Lodowski DT et al (2011) Rhodopsin-transducin heteropentamer: three-dimensional structure and biochemical characterization. J Struct Biol 176:387–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Goc A, Angel TE, Jastrzebska B et al (2008) Different properties of the native and reconstituted heterotrimeric G protein transducin. Biochemistry 47:12409–12419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Xu H, Freitas MA (2010) A dynamic noise level algorithm for spectral screening of peptide MS/MS spectra. BMC Bioinformatics 11:436

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sun ZY, Oh KJ, Kim M et al (2008) HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity 28:52–63

    Article  PubMed  Google Scholar 

  20. Kaur P, Kiselar JG, Chance MR (2009) Integrated algorithms for high-throughput examination of covalently labeled biomolecules by structural mass spectrometry. Anal Chem 81:8141–8149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gupta S, D'Mello R, Chance MR (2012) Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry. Proc Natl Acad Sci U S A 109:14882–14887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Xu G, Kiselar J, He Q et al (2005) Secondary reactions and strategies to improve quantitative protein footprinting. Anal Chem 77:3029–3037

    Article  CAS  PubMed  Google Scholar 

  23. Wisniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  CAS  PubMed  Google Scholar 

  24. Takamoto K, Chance MR (2006) Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu Rev Biophys Biomol Struct 35:251–276

    Article  CAS  PubMed  Google Scholar 

  25. Maleknia SD, Chance MR, Downard KM (1999) Electrospray-assisted modification of proteins: a radical probe of protein structure. Rapid Commun Mass Spectrom 13:2352–2358

    Article  CAS  PubMed  Google Scholar 

  26. Kiselar JG, Mahaffy R, Pollard TD et al (2007) Visualizing Arp2/3 complex activation mediated by binding of ATP and WASp using structural mass spectrometry. Proc Natl Acad Sci U S A 104:1552–1557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Okada T, Sugihara M, Bondar AN et al (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol 342:571–583

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Chance Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, L., Chance, M.R. (2015). Detection of Structural Waters and Their Role in Structural Dynamics of Rhodopsin Activation. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics