Skip to main content

Kinetics of Rhodopsin’s Chromophore Monitored in a Single Photoreceptor

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1271))

Abstract

Absorption of light isomerizes the retinyl chromophore of the photoreceptor pigment rhodopsin from 11-cis to all-trans, generating the photoactivated rhodopsin form. The photoisomerization of the chromophore however destroys rhodopsin, and its regeneration requires the removal of the all-trans and the supply of fresh 11-cis chromophore. The all-trans chromophore is removed through a series of steps beginning with its release from photoactivated rhodopsin in the form of all-trans-retinal, leaving behind the apoprotein opsin. All-trans-retinal is then reduced to all-trans-retinol, which is transported out of the photoreceptor. Rhodopsin is regenerated from opsin and fresh 11-cis-retinal arriving to the photoreceptor from the retinal pigment epithelium. Both all-trans and 11-cis-retinal can form precursors of lipofuscin, a pigment that accumulates with age in the lysosomal compartment of the retinal pigment epithelium. All-trans-retinal, all-trans-retinol, and lipofuscin precursors all emit significant and distinct fluorescence signals, allowing their monitoring in single photoreceptor cells with fluorescence imaging. Here we describe the procedures for measuring these fluorophores in single mouse rod photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94

    Article  CAS  PubMed  Google Scholar 

  2. Fain GL, Matthews HR, Cornwall MC et al (2001) Adaptation in vertebrate photoreceptors. Physiol Rev 81:117–151

    CAS  PubMed  Google Scholar 

  3. Lamb TD, Pugh EN Jr (2004) Dark adaptation and the retinoid cycle of vision. Prog Retin Eye Res 23:307–380

    Article  CAS  PubMed  Google Scholar 

  4. Kiser PD, Golczak M, Palczewski K (2014) Chemistry of the retinoid (visual) cycle. Chem Rev 114:194–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chen C, Thompson DA, Koutalos Y (2012) Reduction of all-trans-retinal in vertebrate rod photoreceptors requires the combined action of RDH8 and RDH12. J Biol Chem 287:24662–24670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Maeda A, Maeda T, Imanishi Y et al (2005) Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo. J Biol Chem 280:18822–18832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Futterman S, Hendrickson A, Bishop PE et al (1970) Metabolism of glucose and reduction of retinaldehyde in retinal photoreceptors. J Neurochem 17:149–156

    Article  CAS  PubMed  Google Scholar 

  8. Okajima TI, Pepperberg DR, Ripps H et al (1989) Interphotoreceptor retinoid-binding protein: role in delivery of retinol to the pigment epithelium. Exp Eye Res 49:629–644

    Article  CAS  PubMed  Google Scholar 

  9. Saari JC (2000) Biochemistry of visual pigment regeneration: the Friedenwald lecture. Invest Ophthalmol Vis Sci 41:337–348

    CAS  PubMed  Google Scholar 

  10. Kawaguchi R, Yu J, Honda J et al (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–825

    Article  CAS  PubMed  Google Scholar 

  11. Saari JC, Bredberg DL, Farrell DF (1993) Retinol esterification in bovine retinal pigment epithelium: reversibility of lecithin:retinol acyltransferase. Biochem J 291:697–700

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Jin M, Li S, Moghrabi WN et al (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122:449–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Moiseyev G, Chen Y, Takahashi Y et al (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 102:12413–12418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Redmond TM, Poliakov E, Yu S et al (2005) Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A 102:13658–13663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Simon A, Hellman U, Wernstedt C et al (1995) The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J Biol Chem 270:1107–1112

    Article  CAS  PubMed  Google Scholar 

  16. Okajima TI, Pepperberg DR, Ripps H et al (1990) Interphotoreceptor retinoid-binding protein promotes rhodopsin regeneration in toad photoreceptors. Proc Natl Acad Sci U S A 87:6907–6911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Maeda T, Golczak M, Maeda A (2012) Retinal photodamage mediated by all-trans-retinal. Photochem Photobiol 88:1309–1319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Masutomi K, Chen C, Nakatani K et al (2012) All-trans retinal mediates light-induced oxidation in single living rod photoreceptors. Photochem Photobiol 88:1356–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rozanowska M, Sarna T (2005) Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem Photobiol 81:1305–1330

    Article  CAS  PubMed  Google Scholar 

  20. Sparrow JR, Wu Y, Kim CY et al (2010) Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J Lipid Res 51:247–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606

    Article  CAS  PubMed  Google Scholar 

  22. Sparrow JR, Gregory-Roberts E, Yamamoto K et al (2012) The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 31:121–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Boyer NP, Higbee D, Currin MB et al (2012) Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal. J Biol Chem 287:22276–22286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Katz ML, Redmond TM (2001) Effect of Rpe65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 42:3023–3030

    CAS  PubMed  Google Scholar 

  25. Katz ML, Drea CM, Eldred GE et al (1986) Influence of early photoreceptor degeneration on lipofuscin in the retinal pigment epithelium. Exp Eye Res 43:561–573

    Article  CAS  PubMed  Google Scholar 

  26. Katz ML, Robison WG Jr (2002) What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch Gerontol Geriatr 34:169–184

    Article  CAS  PubMed  Google Scholar 

  27. Quazi F, Molday RS (2014) ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal. Proc Natl Acad Sci U S A 111:5024–5029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ala-Laurila P, Kolesnikov AV, Crouch RK et al (2006) Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology. J Gen Physiol 128:153–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tsina E, Chen C, Koutalos Y et al (2004) Physiological and microfluorometric studies of reduction and clearance of retinal in bleached rod photoreceptors. J Gen Physiol 124:429–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wu Q, Blakeley LR, Cornwall MC et al (2007) Interphotoreceptor retinoid-binding protein is the physiologically relevant carrier that removes retinol from rod photoreceptor outer segments. Biochemistry 46:8669–8679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Blakeley LR, Chen C, Chen CK et al (2011) Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation. Invest Ophthalmol Vis Sci 52:3483–3491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Chen C, Blakeley LR, Koutalos Y (2009) Formation of all-trans retinol after visual pigment bleaching in mouse photoreceptors. Invest Ophthalmol Vis Sci 50:3589–3595

    Article  PubMed Central  PubMed  Google Scholar 

  33. Palczewska G, Dong Z, Golczak M et al (2014) Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat Med 20:785–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Palczewska G, Golczak M, Williams DR et al (2014) Endogenous fluorophores enable two-photon imaging of the primate eye. Invest Ophthalmol Vis Sci 55(7):4438–4447

    Article  PubMed Central  PubMed  Google Scholar 

  35. Koutalos Y, Cornwall MC (2010) Microfluorometric measurement of the formation of all-trans-retinol in the outer segments of single isolated vertebrate photoreceptors. Methods Mol Biol 652:129–147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hubbard R, Brown PK, Bownds D (1971) Methodology of vitamin A and visual pigments. Methods Enzymol 18C:615–653

    Article  Google Scholar 

  37. Adler L IV, Chen C, Koutalos Y (2014) Mitochondria contribute to NADPH generation in mouse rod photoreceptors. J Biol Chem 289:1519–1528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiannis Koutalos Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Adler, L., Boyer, N.P., Chen, C., Koutalos, Y. (2015). Kinetics of Rhodopsin’s Chromophore Monitored in a Single Photoreceptor. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics