Skip to main content

Immunocytochemical Detection of Intraneuronal Aβ Peptides in Mouse Models of Alzheimer’s Disease

  • Protocol
  • First Online:
Immunocytochemistry and Related Techniques

Part of the book series: Neuromethods ((NM,volume 101))

  • 1551 Accesses

Abstract

Alzheimer’s disease (AD) represents a severe progressive neurodegenerative disorder and the most frequent form of dementia. It is characterized by major neuropathological hallmarks consisting of either extracellular deposited amyloid-β (Aβ) peptides or intracellular accumulations of hyperphosphorylated tau protein in the form of so-called neurofibrillary tangles (NFTs). In addition to the presence of the extracellular amyloid plaques, intraneuronal Aβ accumulations have been repeatedly reported in postmortem tissue from AD patients, as well as in numerous transgenic AD mouse models overexpressing the amyloid precursor protein (APP). Several staining protocols to detect intraneuronal Aβ exist, employing different methods of tissue pretreatment, including the use of microwave heat treatment or formic acid, among others. In this book chapter, we outline an efficient protocol for reliable antigen retrieval of intracellular Aβ in AD mouse models using paraffin-embedded brain material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    Article  CAS  PubMed  Google Scholar 

  2. Aizenstein HJ, Nebes RD, Saxton JA et al (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517

    Article  PubMed Central  PubMed  Google Scholar 

  3. Schonheit B, Zarski R, Ohm TG (2004) Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology. Neurobiol Aging 25:697–711

    Article  PubMed  Google Scholar 

  4. Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68:270–281

    Article  CAS  PubMed  Google Scholar 

  5. Grundke-Iqbal I, Iqbal K, George L et al (1989) Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc Natl Acad Sci U S A 86:2853–2857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26:1235–1244

    Article  CAS  PubMed  Google Scholar 

  7. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    Article  CAS  PubMed  Google Scholar 

  8. Gouras GK, Tsai J, Naslund J et al (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156:15–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. D’Andrea MR, Nagele RG, Wang HY et al (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38:120–134

    Article  PubMed  Google Scholar 

  10. Nagele RG, D’Andrea MR, Anderson WJ et al (2002) Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience 110:199–211

    Article  CAS  PubMed  Google Scholar 

  11. Gyure KA, Durham R, Stewart WF et al (2001) Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 125:489–492

    CAS  PubMed  Google Scholar 

  12. Mori C, Spooner ET, Wisniewsk KE et al (2002) Intraneuronal Abeta42 accumulation in Down syndrome brain. Amyloid 9:88–102

    CAS  PubMed  Google Scholar 

  13. Wegiel J, Kuchna I, Nowicki K et al (2007) Intraneuronal Abeta immunoreactivity is not a predictor of brain amyloidosis-beta or neurofibrillary degeneration. Acta Neuropathol 113:389–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hashimoto M, Bogdanovic N, Volkmann I et al (2010) Analysis of microdissected human neurons by a sensitive ELISA reveals a correlation between elevated intracellular concentrations of Abeta42 and Alzheimer’s disease neuropathology. Acta Neuropathol 119:543–554

    Article  CAS  PubMed  Google Scholar 

  15. Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:5–38

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wirths O, Multhaup G, Bayer TA (2004) A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide—the first step of a fatal cascade. J Neurochem 91:513–520

    Article  CAS  PubMed  Google Scholar 

  17. Wirths O, Multhaup G, Czech C et al (2002) Intraneuronal APP/A beta trafficking and plaque formation in beta-amyloid precursor protein and presenilin-1 transgenic mice. Brain Pathol 12:275–286

    Article  CAS  PubMed  Google Scholar 

  18. Langui D, Girardot N, El Hachimi KH et al (2004) Subcellular topography of neuronal Abeta peptide in APPxPS1 transgenic mice. Am J Pathol 165:1465–1477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Takahashi RH, Milner TA, Li F et al (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Schmitz C, Rutten BP, Pielen A et al (2004) Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 164:1495–1502

    Article  PubMed Central  PubMed  Google Scholar 

  21. Casas C, Sergeant N, Itier JM et al (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Christensen DZ, Kraus SL, Flohr A et al (2008) Transient intraneuronal Abeta rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice. Acta Neuropathol 116:647–655

    Article  CAS  PubMed  Google Scholar 

  23. Eimer WA, Vassar R (2013) Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Abeta42 accumulation and Caspase-3 activation. Mol Neurodegener 8:2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jawhar S, Trawicka A, Jenneckens C et al (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 33:196.e29–196.e40

    Article  CAS  Google Scholar 

  25. Christensen DZ, Bayer TA, Wirths O (2009) Formic acid is essential for immunohistochemical detection of aggregated intraneuronal Abeta peptides in mouse models of Alzheimer’s disease. Brain Res 1301:116–125

    Article  CAS  PubMed  Google Scholar 

  26. Lucassen PJ, Ravid R, Gonatas NK et al (1993) Activation of the human supraoptic and paraventricular nucleus neurons with aging and in Alzheimer’s disease as judged from increasing size of the Golgi apparatus. Brain Res 632:105–113

    Article  CAS  PubMed  Google Scholar 

  27. Oakley H, Cole SL, Logan S et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

    Article  CAS  PubMed  Google Scholar 

  28. Wirths O, Multhaup G, Czech C et al (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306:116–120

    Article  CAS  PubMed  Google Scholar 

  29. D’Andrea MR, Nagele RG, Wang HY et al (2002) Consistent immunohistochemical detection of intracellular beta-amyloid42 in pyramidal neurons of Alzheimer’s disease entorhinal cortex. Neurosci Lett 333:163–166

    Article  PubMed  Google Scholar 

  30. D’Andrea MR, Reiser PA, Polkovitch DA et al (2003) The use of formic acid to embellish amyloid plaque detection in Alzheimer’s disease tissues misguides key observations. Neurosci Lett 342:114–118

    Article  PubMed  Google Scholar 

  31. Aho L, Pikkarainen M, Hiltunen M et al (2010) Immunohistochemical visualization of amyloid-beta protein precursor and amyloid-beta in extra- and intracellular compartments in the human brain. J Alzheimers Dis 20:1015–1028

    CAS  PubMed  Google Scholar 

  32. Oddo S, Caccamo A, Shepherd JD et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    Article  CAS  PubMed  Google Scholar 

  33. Winton MJ, Lee EB, Sun E et al (2011) Intraneuronal APP, not free Ab peptides in 3xTg-AD mice: implications for Tau versus Ab-mediated Alzheimer neurodegeneration. J Neurosci 31:7691–7699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wirths O, Dins A, Bayer TA (2012) AbetaPP accumulation and/or intraneuronal amyloid-beta accumulation? The 3xTg-AD mouse model revisited. J Alzheimers Dis 28:897–904

    CAS  PubMed  Google Scholar 

  35. Gouras GK, Tampellini D, Takahashi RH et al (2010) Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 119:523–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Breyhan H, Wirths O, Duan K et al (2009) APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy. Acta Neuropathol 117:677–685

    Article  PubMed  Google Scholar 

  37. Dong H, Martin MV, Chambers S et al (2007) Spatial relationship between synapse loss and beta-amyloid deposition in Tg2576 mice. J Comp Neurol 500:311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Billings LM, Oddo S, Green KN et al (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    Article  CAS  PubMed  Google Scholar 

  39. Knobloch M, Farinelli M, Konietzko U et al (2007) Abeta oligomer-mediated long-term potentiation impairment involves protein phosphatase 1-dependent mechanisms. J Neurosci 27:7648–7653

    Article  CAS  PubMed  Google Scholar 

  40. Tomiyama T, Matsuyama S, Iso H et al (2010) A mouse model of amyloid-b oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30:4845–4856

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Wirths .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wirths, O., Saul, A. (2015). Immunocytochemical Detection of Intraneuronal Aβ Peptides in Mouse Models of Alzheimer’s Disease. In: Merighi, A., Lossi, L. (eds) Immunocytochemistry and Related Techniques. Neuromethods, vol 101. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2313-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2313-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2312-0

  • Online ISBN: 978-1-4939-2313-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics