Skip to main content

Evaluation of Unconventional Protein Secretion in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Book cover Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1270))

Abstract

Recent development of large-scale analyses such as the secretome analysis has enabled the discovery of a vast number of intracellular proteins that are secreted outside the cell. Often, these proteins do not contain any known signal sequence required for conventional protein secretion. In order to avoid misidentification of such “leaked” proteins as “secreted” proteins, reconstructing the process of protein secretion is essential. Here, we describe methods for the detection of reconstructed unconventional protein secretion and determination of regulatory proteins of secretion in Saccharomyces cerevisiae. We show that conjugating target proteins with a tag-sequence and utilizing various reagents and tools can facilitate quantitative detection of the secretion of target proteins. We expect that these methods will reveal novel unconventional secretion pathways of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Deventer HJ, Goessens WH, van Vliet AJ et al (1996) Anti-enolase antibodies partially protective against systemic candidiasis in mice. Clin Microbiol Infect 2:36–43

    Article  PubMed  Google Scholar 

  2. Torimura T, Ueno T, Kin M et al (2001) Autocrine motility factor enhances hepatoma cell invasion across the basement membrane through activation of beta1 integrins. Hepatology 34:62–71

    Article  CAS  PubMed  Google Scholar 

  3. Dobashi Y, Watanabe H, Matsubara M et al (2006) Autocrine motility factor/glucose-6-phosphate isomerase is a possible predictor of metastasis in bone and soft tissue tumours. J Pathol 208:44–53

    Article  CAS  PubMed  Google Scholar 

  4. Capello M, Ferri-Borgogno S, Cappello P et al (2011) α-Enolase: a promising therapeutic and diagnostic tumor target. FEBS J 278:1064–1074

    Article  Google Scholar 

  5. Villarreal L, Méndez O, Salvans C et al (2013) Unconventional secretion is a major contributor of cancer cell line secretomes. Mol Cell Proteomics 12:1046–1060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Jeffery CJ (2013) New ideas on protein moonlighting. In: Henderson B (ed) Moonlighting cell stress proteins in microbial infections. Springer, New York, pp 51–66

    Chapter  Google Scholar 

  7. Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10:148–155

    Article  CAS  PubMed  Google Scholar 

  8. Duran JM, Anjard C, Stefan C et al (2010) Unconventional secretion of Acb1 is mediated by autophagosomes. J Cell Biol 188:527–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Manjithaya R, Anjard C, Loomis WF et al (2010) Unconventional secretion of Pichiapastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J Cell Biol 188:537–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zhang M, Schekman R (2013) Unconventional secretion, unconventional solutions. Science 340:559–561

    Article  CAS  PubMed  Google Scholar 

  11. Miura N, Kirino A, Endo S et al (2012) Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion. Eukaryot Cell 11:1075–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Schekman R (2010) Charting the secretory pathway in a simple eukaryote. Mol Biol Cell 21:3781–3784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Oliveira DL, Nakayasu ES, Joffe LS et al (2010) Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS ONE 5:e11113

    Article  PubMed Central  PubMed  Google Scholar 

  14. Giardina BJ, Stanley BA, Chiang HL (2014) Glucose induces rapid changes in the secretome of Saccharomyces cerevisiae. Proteome Sci 12:9

    Article  PubMed Central  PubMed  Google Scholar 

  15. Shinya R, Morisaka H, Kikuchi T et al (2013) Secretome analysis of the pine wood nematode Bursaphelenchus xylophilus reveals the tangled roots of parasitism and its potential for molecular mimicry. PLoS ONE 21:e67377

    Article  Google Scholar 

  16. de Wit M, Kant H, Piersma SR et al (2014) Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling. J Proteomics 99C:26–39

    Article  Google Scholar 

  17. Wasinger VC, Zeng M, Yau Y (2013) Current status and advances in quantitative proteomic mass spectrometry. Int J Proteomics 2013:180605

    Article  PubMed Central  PubMed  Google Scholar 

  18. Miura N, Shinohara M, Tatsukami Y et al (2013) Spatial reorganization of Saccharomyces cerevisiae enolase to alter carbon metabolism under hypoxia. Eukaryot Cell 12:1106–1119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Muthusamy BP, Natarajan P, Zhou X, Graham TR (2009) Linking phospholipid flippases to vesicle-mediated protein transport. Biochim Biophys Acta 1791:612–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bröcker C, Engelbrecht-Vandré S, Ungermann C (2010) Multisubunit tethering complexes and their role in membrane fusion. Curr Biol 20:R943–R952

    Article  PubMed  Google Scholar 

  21. Novick P, Schekman R (1979) Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 76:1858–1862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215

    Article  CAS  PubMed  Google Scholar 

  23. Bryant NJ, Stevens TH (1998) Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 62:230–247

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Hua Z, Fatheddin P, Graham TR (2002) An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol Biol Cell 13:3162–3177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gall WE, Geething NC, Hua Z, Ingram MF, Liu K, Chen SI, Graham TR (2002) Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr Biol 12:1623–1627

    Article  CAS  PubMed  Google Scholar 

  26. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  CAS  PubMed  Google Scholar 

  27. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  28. Entian KD, Schuster T, Hegemann JH et al (1999) Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet 262:683–702

    Article  CAS  PubMed  Google Scholar 

  29. Matsui K, Kuroda K, Ueda M (2009) Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering. Appl Microbiol Biotechnol 82:105–113

    Article  CAS  PubMed  Google Scholar 

  30. Ito H, Fukuda Y, Murata K et al (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miura, N., Ueda, M. (2015). Evaluation of Unconventional Protein Secretion in Saccharomyces cerevisiae . In: Tang, B. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 1270. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2309-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2309-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2308-3

  • Online ISBN: 978-1-4939-2309-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics