Skip to main content

Adeno-Associated Viral Gene Therapy for Retinal Disorders

  • Protocol
  • First Online:
Book cover Gene Delivery and Therapy for Neurological Disorders

Part of the book series: Neuromethods ((NM,volume 98))

Abstract

Gene therapy is ideally suited to the treatment of inherited retinal degenerations in order to prevent blindness. The target area of the outer retina is small and relatively immune privileged, which facilitates the delivery of small volumes of vector without generating significant immune reactions. Moreover, most of the currently untreatable forms of blindness have a genetic component, either monogenic such as in retinitis pigmentosa or as a result of several genes interacting along a common pathway, such as age-related macular degeneration, the commonest cause of legal blindness in the developed world. The self-contained nature of the eye also facilitates the application of gene therapy for sustained expression of intraocular proteins, such as inhibitors of angiogenesis or growth factors that might confer neuroprotection to dying cells. In this chapter, we review the indications and applications of gene therapy, concentrating specifically on adeno-associated viral (AAV) vectors, describing the protocols for production and administration of AAV vectors to the eye in the laboratory setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomita T (1970) Electrical activity of vertebrate photoreceptors. Q Rev Biophys 3:179–222

    Article  CAS  PubMed  Google Scholar 

  2. Korenbrot JI (2012) Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 31:442–466

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rodieck RW (1998) The first steps in seeing. Sinauer Associates, Sunderland, MA

    Google Scholar 

  4. Bessant DA, Ali RR, Bhattacharya SS (2001) Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11:307–316

    Article  CAS  PubMed  Google Scholar 

  5. Ivanova E, Hwang GS, Pan ZH et al (2010) Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest Ophthalmol Vis Sci 51:5288–5296

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bok D, Yasumura D, Matthes MT et al (2002) Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp Eye Res 74:719–735

    Article  CAS  PubMed  Google Scholar 

  7. Redmond TM, Yu S, Lee E et al (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20:344–351

    Article  CAS  PubMed  Google Scholar 

  8. Pang JJ, Chang B, Hawes NL et al (2005) Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol Vis 11:152–162

    CAS  PubMed  Google Scholar 

  9. Samardzija M, von Lintig J, Tanimoto N et al (2008) R91W mutation in Rpe65 leads to milder early-onset retinal dystrophy due to the generation of low levels of 11-cis-retinal. Hum Mol Genet 17:281–292

    Article  CAS  PubMed  Google Scholar 

  10. Bennicelli J, Wright JF, Komaromy A et al (2008) Reversal of blindness in animal models of Leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther 16:458–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Pang JJ, Chang B, Kumar A et al (2006) Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol Ther 13:565–572

    Article  CAS  PubMed  Google Scholar 

  12. Roman AJ, Boye SL, Aleman TS et al (2007) Electroretinographic analyses of Rpe65-mutant rd12 mice: developing an in vivo bioassay for human gene therapy trials of Leber congenital amaurosis. Mol Vis 13:1701–1710

    CAS  PubMed  Google Scholar 

  13. Acland GM, Aguirre GD, Ray J et al (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28:92–95

    CAS  PubMed  Google Scholar 

  14. Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  CAS  PubMed  Google Scholar 

  15. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hauswirth WW, Aleman TS, Kaushal S et al (2008) Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Banin E, Bandah-Rozenfeld D, Obolensky A et al (2010) Molecular anthropology meets genetic medicine to treat blindness in the North African Jewish population: human gene therapy initiated in Israel. Hum Gene Ther 21:1749–1757

    Article  CAS  PubMed  Google Scholar 

  18. Jacobson SG, Cideciyan AV, Ratnakaram R et al (2012) Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130:9–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bennett J, Ashtari M, Wellman J et al (2012) AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 4:120ra115

    Google Scholar 

  20. Maclaren RE, Groppe M, Barnard AR et al (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383(9923):1129–1137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Rolling F (2004) Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Ther 11(Suppl 1):S26–S32

    Article  CAS  PubMed  Google Scholar 

  22. Rabinowitz JE, Samulski J (1998) Adeno-associated virus expression systems for gene transfer. Curr Opin Biotechnol 9:470–475

    Article  CAS  PubMed  Google Scholar 

  23. Kotin RM, Siniscalco M, Samulski RJ et al (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 87:2211–2215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Schnepp BC, Jensen RL, Chen CL et al (2005) Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 79:14793–14803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lebherz C, Maguire A, Tang W et al (2008) Novel AAV serotypes for improved ocular gene transfer. J Gene Med 10:375–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gao GP, Alvira MR, Wang L et al (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99:11854–11859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Samulski RJ, Srivastava A, Berns KI et al (1983) Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV. Cell 33:135–143

    Article  CAS  PubMed  Google Scholar 

  28. Rabinowitz JE, Rolling F, Li C et al (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76:791–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ali RR, Reichel MB, Thrasher AJ et al (1996) Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 5:591–594

    Article  CAS  PubMed  Google Scholar 

  30. Xu L, Daly T, Gao C et al (2001) CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Hum Gene Ther 12:563–573

    Article  CAS  PubMed  Google Scholar 

  31. Paterna JC, Moccetti T, Mura A et al (2000) Influence of promoter and WHV post-transcriptional regulatory element on AAV-mediated transgene expression in the rat brain. Gene Ther 7:1304–1311

    Article  CAS  PubMed  Google Scholar 

  32. Brooks AR, Harkins RN, Wang P et al (2004) Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 6:395–404

    Article  CAS  PubMed  Google Scholar 

  33. Le Meur G, Stieger K, Smith AJ et al (2007) Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 14:292–303

    Article  PubMed  Google Scholar 

  34. Boye SE, Alexander JJ, Boye SL et al (2012) The human rhodopsin kinase promoter in an AAV5 vector confers rod and cone specific expression in the primate retina. Hum Gene Ther 23(10):1101–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Komaromy AM, Alexander JJ, Cooper AE et al (2008) Targeting gene expression to cones with human cone opsin promoters in recombinant AAV. Gene Ther 15:1049–1055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Carvalho LS, Xu J, Pearson RA et al (2011) Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet 20:3161–3175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Doroudchi MM, Greenberg KP, Liu J et al (2011) Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 19:1220–1229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Yin L, Greenberg K, Hunter JJ et al (2011) Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci 52:2775–2783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Loeb JE, Cordier WS, Harris ME et al (1999) Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Hum Gene Ther 10:2295–2305

    Article  CAS  PubMed  Google Scholar 

  40. Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105

    Article  CAS  PubMed  Google Scholar 

  41. Kingsman SM, Mitrophanous K, Olsen JC (2005) Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Ther 12:3–4

    Article  CAS  PubMed  Google Scholar 

  42. McCarty DM, Fu H, Monahan PE et al (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 10:2112–2118

    Article  CAS  PubMed  Google Scholar 

  43. Yokoi K, Kachi S, Zhang HS et al (2007) Ocular gene transfer with self-complementary AAV vectors. Invest Ophthalmol Vis Sci 48:3324–3328

    Article  PubMed  Google Scholar 

  44. Natkunarajah M, Trittibach P, McIntosh J et al (2008) Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Ther 15:463–467

    Article  CAS  PubMed  Google Scholar 

  45. Petersen-Jones SM, Bartoe JT, Fischer AJ et al (2009) AAV retinal transduction in a large animal model species: comparison of a self-complementary AAV2/5 with a single-stranded AAV2/5 vector. Mol Vis 15:1835–1842

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Bartlett JS, Wilcher R, Samulski RJ (2000) Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 74:2777–2785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Zhong L, Li B, Mah CS et al (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci U S A 105:7827–7832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Petrs-Silva H, Dinculescu A, Li Q et al (2009) High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 17:463–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Petrs-Silva H, Dinculescu A, Li Q et al (2011) Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 19:293–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kong J, Kim SR, Binley K et al (2008) Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther 15:1311–1320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Auricchio A, Kobinger G, Anand V et al (2001) Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 10:3075–3081

    Article  CAS  PubMed  Google Scholar 

  52. Dong JY, Fan PD, Frizzell RA (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 7:2101–2112

    Article  CAS  PubMed  Google Scholar 

  53. Grieger JC, Samulski RJ (2005) Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 79:9933–9944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Monahan PE, Lothrop CD, Sun J et al (2010) Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models: a strategy for broad clinical application. Mol Ther 18:1907–1916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Allocca M, Doria M, Petrillo M et al (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118:1955–1964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Dong B, Nakai H, Xiao W (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18:87–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18:80–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Lai Y, Yue Y, Duan D (2010) Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome > or =8.2 kb. Mol Ther 18:75–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Duan D, Yue Y, Engelhardt JF (2001) Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 4:383–391

    Article  CAS  PubMed  Google Scholar 

  60. Halbert CL, Allen JM, Miller AD (2002) Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat Biotechnol 20:697–701

    Article  CAS  PubMed  Google Scholar 

  61. Grose WE, Clark KR, Griffin D et al (2012) Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer. PLoS One 7:e39233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Odom GL, Gregorevic P, Allen JM et al (2011) Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6. Mol Ther 19:36–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Yan Z, Zhang Y, Duan D et al (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A 97:6716–6721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lai Y, Yue Y, Liu M et al (2005) Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 23:1435–1439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Li J, Sun W, Wang B et al (2008) Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther 19:958–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Ghosh A, Yue Y, Shin JH et al (2009) Systemic trans-splicing adeno-associated viral delivery efficiently transduces the heart of adult mdx mouse, a model for Duchenne muscular dystrophy. Hum Gene Ther 20:1319–1328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Reich SJ, Auricchio A, Hildinger M et al (2003) Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum Gene Ther 14:37–44

    Article  CAS  PubMed  Google Scholar 

  68. Ghosh A, Yue Y, Lai Y et al (2008) A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther 16:124–130

    Article  CAS  PubMed  Google Scholar 

  69. Trapani I, Colella P, Sommella A et al (2014) Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 6:194–211

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Palfi A, Chadderton N, McKee AG et al (2012) Efficacy of codelivery of dual AAV2/5 vectors in the murine retina and hippocampus. Hum Gene Ther 23:847–858

    Article  CAS  PubMed  Google Scholar 

  71. Ghosh A, Yue Y, Duan D (2006) Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. J Gene Med 8:298–305

    Article  PubMed Central  PubMed  Google Scholar 

  72. Ghosh A, Yue Y, Duan D (2011) Efficient transgene reconstitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum Gene Ther 22:77–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Dunn KC, Aotaki-Keen AE, Putkey FR et al (1996) ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62:155–169

    Article  CAS  PubMed  Google Scholar 

  74. Ryals RC, Boye SL, Dinculescu A et al (2011) Quantifying transduction efficiencies of unmodified and tyrosine capsid mutant AAV vectors in vitro using two ocular cell lines. Mol Vis 17:1090–1102

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Seigel GM (1999) The golden age of retinal cell culture. Mol Vis 5:4

    CAS  PubMed  Google Scholar 

  76. Krishnamoorthy RR, Agarwal P, Prasanna G et al (2001) Characterization of a transformed rat retinal ganglion cell line. Brain Res Mol Brain Res 86:1–12

    Article  CAS  PubMed  Google Scholar 

  77. Biedler JL, Roffler-Tarlov S, Schachner M et al (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38:3751–3757

    CAS  PubMed  Google Scholar 

  78. You Q, Brown L, McClements M, Hankins MW, Maclaren RE (2012) Tetradecanoylphorbol-13-acetate (TPA) significantly increases AAV2/5 transduction of human neuronal cells in vitro. Exp Eye Res 97(1):148–153

    Article  CAS  PubMed  Google Scholar 

  79. Garrity-Moses ME, Teng Q, Liu J et al (2005) Neuroprotective adeno-associated virus Bcl-xL gene transfer in models of motor neuron disease. Muscle Nerve 32:734–744

    Article  CAS  PubMed  Google Scholar 

  80. Charbel Issa P, Singh MS, Lipinski DM et al (2012) Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration. Invest Ophthalmol Vis Sci 53:1066–1075

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. MacLaren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Silva, S.R., McClements, M.E., Hankins, M.W., MacLaren, R.E. (2015). Adeno-Associated Viral Gene Therapy for Retinal Disorders. In: Bo, X., Verhaagen, J. (eds) Gene Delivery and Therapy for Neurological Disorders. Neuromethods, vol 98. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2306-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2306-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2305-2

  • Online ISBN: 978-1-4939-2306-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics