Skip to main content

Gene Therapy for Parkinson’s Disease: AAV5-Mediated Delivery of Glial Cell Line-Derived Neurotrophic Factor (GDNF)

  • Protocol
  • First Online:
Gene Delivery and Therapy for Neurological Disorders

Part of the book series: Neuromethods ((NM,volume 98))

Abstract

Parkinson’s disease (PD) is characterized by neurodegeneration of the dopaminergic neurons. Glial cell line-derived neurotrophic factor (GDNF) has been identified as possible therapeutic molecule for the treatment of neurodegenerative diseases in several different animal models. Delivery of the GDNF has been proven to be very efficient using recombinant AAV vectors. AAV2 has been widely used for the delivery of transgenes to the brain and has even led to a clinical trial for the treatment of PD. A serotype that is known for highly effective delivery of its transgene to the brain is AAV serotype 5. At uniQure, we have developed a baculoviral-based triple infection method of SF9 insect cells that is scalable for GMP use. Using this method two AAV5 stocks encoding GDNF or GFP under control of the CAG promoter were generated and used in the current study. Biological activity of the vector was demonstrated in vitro using conditioned medium from transduced cells. In vivo analysis of the vector was performed in healthy rats following slow infusion into the brains. Recombinant AAV-mediated GDNF was detected in brain homogenates and on tissue sections. When the vector was infused in a 6-OHDA rat model, the GDNF was able to almost completely rescue the neurons in the substantia nigra. These results indicate that our viral vector can be used in an in vivo setting and can be tested in neurodegenerative disease models and further developed for possible clinical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Website of the Parkinson’s disease foundation. http://www.pdf.org/en/parkinson_statistics and http://www.epda.eu.com/en/parkinsons/life-with-parkinsons/part-1/prevalence-of-parkinsons-disease

  2. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  CAS  PubMed  Google Scholar 

  3. Rascol O, Goetz C, Koller W, Poewe W, Sampaio C (2002) Treatment interventions for Parkinson’s disease: an evidence based assessment. Lancet 359:1589–1598

    Article  PubMed  Google Scholar 

  4. Jenkinson C, Fitzpatrick R, Peto V et al (1997) The Parkinson’s Disease Questionnaire (PDQ-39): development and validity of a Parkinson’s disease summary index score. Age Ageing 26:353–357

    Article  CAS  PubMed  Google Scholar 

  5. Fargel M, Grobe B, Oesterle E, Hastedt C, Rupp M (2007) Treatment of Parkinson’s disease: a survey of patients and neurologists. Clin Drug Investig 27:207–218

    Article  PubMed  Google Scholar 

  6. Fiandaca MS, Bankiewicz KS, Federoff HJ (2012) Gene therapy for the treatment of Parkinson’s disease: the nature of the biologics expands the future indications. Pharmaceuticals (Basel) 5:553–590

    Article  CAS  Google Scholar 

  7. Kulisevsky J, Luquin MR, Arbelo JM et al (2013) Advanced Parkinson’s disease: clinical characteristics and treatment. Part II. Neurologia 28:558–583

    Article  CAS  PubMed  Google Scholar 

  8. Worth PF (2013) How to treat Parkinson’s disease in 2013. Clin Med 13:93–96

    Article  PubMed  Google Scholar 

  9. Engele J, Schaubert D, Bohn MC (1991) Conditioned media derived from glial cell lines promote survival and differentiation of dopaminergic neurons in vitro: role of mesencephalic glia. J Neurosci Res 30:359–371

    Article  CAS  PubMed  Google Scholar 

  10. Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  11. Beck KD, Valverde J, Alexi T et al (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373:339–341

    Article  CAS  PubMed  Google Scholar 

  12. Tomac A, Lindqvist E, Lin LF et al (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339

    Article  CAS  PubMed  Google Scholar 

  13. Gash DM, Zhang Z, Ovadia A et al (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255

    Article  CAS  PubMed  Google Scholar 

  14. Choi-Lundberg DL, Lin Q, Chang YN et al (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275:838–841

    Article  CAS  PubMed  Google Scholar 

  15. Bjorklund A, Rosenblad C, Winkler C, Kirik D (1997) Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson’s disease. Neurobiol Dis 4:186–200

    Article  CAS  PubMed  Google Scholar 

  16. Gash DM, Zhang Z, Gerhardt G (1998) Neuroprotective and neurorestorative properties of GDNF. Ann Neurol 44:S121–S125

    Article  CAS  PubMed  Google Scholar 

  17. Connor B, Kozlowski DA, Schallert T et al (1999) Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther 6:1936–1951

    Article  CAS  PubMed  Google Scholar 

  18. Kirik D, Rosenblad C, Bjorklund A, Mandel RJ (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20:4684–4700

    Google Scholar 

  19. Kordower JH, Emborg ME, Bloch J et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  CAS  PubMed  Google Scholar 

  20. Grondin R, Zhang Z, Ai Y et al (2003) Intracranial delivery of proteins and peptides as a therapy for neurodegenerative diseases. Prog Drug Res 61:101–123

    CAS  PubMed  Google Scholar 

  21. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595

    Article  CAS  PubMed  Google Scholar 

  22. Blits B, Carlstedt TP, Ruitenberg MJ et al (2004) Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor. Exp Neurol 189:303–316

    Article  CAS  PubMed  Google Scholar 

  23. Eslamboli A, Georgievska B, Ridley RM et al (2005) Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 25:769–777

    Article  CAS  PubMed  Google Scholar 

  24. Kells AP, Eberling J, Su X et al (2010) Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 30:9567–9577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bjorklund A, Kirik D, Rosenblad C et al (2000) Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 886:82–98

    Article  CAS  PubMed  Google Scholar 

  26. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  CAS  PubMed  Google Scholar 

  27. Kordower JH, Palfi S, Chen EY et al (1999) Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 46:419–424

    Article  CAS  PubMed  Google Scholar 

  28. Nutt JG, Burchiel KJ, Comella CL et al (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60:69–73

    Article  CAS  PubMed  Google Scholar 

  29. Slevin JT, Gerhardt GA, Smith CD et al (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102:216–222

    Article  CAS  PubMed  Google Scholar 

  30. Lang AE, Gill SS, Patel NK et al (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59:459–466

    Article  CAS  PubMed  Google Scholar 

  31. Barker RA (2006) Continuing trials of GDNF in Parkinson’s disease. Lancet Neurol 5:285–286

    Article  PubMed  Google Scholar 

  32. Kordower JH, Bjorklund A (2013) Trophic factor gene therapy for Parkinson’s disease. Mov Disord 28:96–109

    Article  CAS  PubMed  Google Scholar 

  33. Bartus RT, Brown L, Wilson A et al (2011) Properly scaled and targeted AAV2-NRTN (neurturin) to the substantia nigra is safe, effective and causes no weight loss: support for nigral targeting in Parkinson’s disease. Neurobiol Dis 44:38–52

    Article  CAS  PubMed  Google Scholar 

  34. Bartus RT, Weinberg MS, Samulski RJ (2014) Parkinson’s disease gene therapy: success by design meets failure by efficacy. Mol Ther 22:487–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mittermeyer G, Christine CW, Rosenbluth KH et al (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23:377–381

    Article  CAS  PubMed  Google Scholar 

  36. Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase 1 trial. Lancet 369:2097–2105

    Article  CAS  PubMed  Google Scholar 

  37. Palfi S, Gurruchaga JM, Ralph GS et al (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383:1138–1146

    Article  CAS  PubMed  Google Scholar 

  38. Kells AP, Forsayeth J, Bankiewicz KS (2012) Glial-derived neurotrophic factor gene transfer for Parkinson’s disease: anterograde distribution of AAV2 vectors in the primate brain. Neurobiol Dis 48:228–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Richardson RM, Kells AP, Rosenbluth KH et al (2011) Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol Ther 19:1048–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gaudet D, de Wal J, Tremblay K et al (2010) Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency. Atheroscler Suppl 11:55–60

    Article  CAS  PubMed  Google Scholar 

  41. Gaudet D, Méthot J, Kastelein J (2012) Gene therapy for lipoprotein lipase deficiency. Curr Opin Lipidol 23:310–320

    Article  CAS  PubMed  Google Scholar 

  42. Gaudet D, Méthot J, Déry S et al (2013) Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 20:361–369

    Article  CAS  PubMed  Google Scholar 

  43. Salmon F, Grosios K, Petry H (2014) Safety profile of recombinant adeno-associated viral vectors: focus on alipogene tiparvovec (Glybera(®)). Expert Rev Clin Pharmacol 7:53–65

    Article  CAS  PubMed  Google Scholar 

  44. Bryant LM, Christopher DM, Giles AR et al (2013) Lessons learned from the clinical development and market authorization of Glybera. Hum Gene Ther Clin Dev 24:55–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Dismuke DJ, Tenenbaum L, Samulski RJ (2013) Biosafety of recombinant adeno-associated virus vectors. Curr Gene Ther 13:434–452

    Article  CAS  PubMed  Google Scholar 

  46. Pochon NA, Menoud A, Tseng JL et al (1997) Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 1997:463–471

    Article  Google Scholar 

  47. Akerud P, Alberch J, Eketjäll S et al (2012) Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons. J Neurochem 73:70–78

    Article  Google Scholar 

  48. Sariola H, Saarma M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116:3855–3862

    Article  CAS  PubMed  Google Scholar 

  49. Eberling JL, Kells AP, Pivirotto P et al (2009) Functional effects of AAV2-GDNF on the dopaminergic nigrostriatal pathway in parkinsonian rhesus monkeys. Hum Gene Ther 20:511–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Urabe M, Ding C, Kotin RM (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13:1935–1943

    Article  CAS  PubMed  Google Scholar 

  51. Unzu C, Hervás-Stubbs S, Sampedro A et al (2012) Transient and intensive pharmacological immunosuppression fails to improve AAV-based liver gene transfer in non-human primates. J Transl Med 10:122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kotin RM (2011) Large-scale recombinant adeno-associated virus production. Hum Mol Genet 20:R2–R6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ruitenberg MJ, Eggers R, Boer GJ, Verhaagen J (2002) Adeno-associated viral vectors as agents for gene delivery: application in disorders and trauma of the central nervous system. Methods 28:182–194

    Article  CAS  PubMed  Google Scholar 

  54. Paxinos G, Watson C (2014) The rat brain in stereotactic coordinates, 7th edn. Academic, Sydney

    Google Scholar 

  55. Kirik D, Georgievska B, Rosenblad C, Bjorklund A (2001) Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson’s disease. Eur J Neurosci 13:1589–1599

    Article  CAS  PubMed  Google Scholar 

  56. Schallert T, Fleming SM, Leasure JL et al (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, Parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  57. Oudega M, Hagg T (1996) Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Exp Neurol 140:218–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Anneli Josefsson, Ulrika Sparrhult-Björk, and Hongyan Liu for their technical support in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bas Blits Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Blits, B., Kirik, D., Petry, H., Hermening, S. (2015). Gene Therapy for Parkinson’s Disease: AAV5-Mediated Delivery of Glial Cell Line-Derived Neurotrophic Factor (GDNF). In: Bo, X., Verhaagen, J. (eds) Gene Delivery and Therapy for Neurological Disorders. Neuromethods, vol 98. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2306-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2306-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2305-2

  • Online ISBN: 978-1-4939-2306-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics