Advertisement

Lentiviral Vectors for Gene Delivery to the Nervous System

  • Ioanna Eleftheriadou
  • Nicholas D. MazarakisEmail author
Protocol
Part of the Neuromethods book series (NM, volume 98)

Abstract

The efficient management and development of therapeutic strategies for disorders of the nervous system still remains a major medical challenge. Gene therapy for the nervous system diseases is particularly challenging due to the post-mitotic nature of neuronal cells and the restricted accessibility of the brain itself. Viral vectors based on lentiviruses are particularly attractive vehicles, routinely used in developing gene-based therapies to treat neurological diseases. Due to their unique properties, which allow them to transduce most nervous system cell types, maintaining strong, and long-term transgene expression, they present a versatile and powerful tool for many research and gene therapy applications. Lentiviral vectors pseudotyped with envelope glycoproteins derived from various viruses, such as VSV and rabies have been shown to be able to genetically modify cells with good efficiency and broad tropism. This chapter discusses lentiviral vectors properties and applications in gene therapy for neurodegenerative diseases, presenting some of the recent progress in this field. We also present the materials and methods necessary to generate high-titer lentiviral vectors. Methods and applications involving lentiviral production are frequently changing. Here we describe the current protocols used and optimized in our laboratories that allow us to produce high-titer lentiviral vector preparations for both in vitro and in vivo applications. Full detailed protocols describe here step-by-step the lentiviral vector production from DNA preparation, culturing of 293T producer cells to transfection for viral production, and titration of the lentiviral vector preparations. We further present standard in vitro transduction experiments and the in vivo applications for which these vectors are used in our research. In the in vivo application section surgical details are presented.

Key words

Lentiviral vectors Gene Therapy Neurodegenerative Diseases Lentiviral vector production In vivo delivery of lentiviral vectors 

References

  1. 1.
    Verma IM, Somia N (1997) Gene therapy – promises, problems and prospects. Nature 389:239–242PubMedGoogle Scholar
  2. 2.
    Federici T, Boulis NM (2006) Gene-based treatment of motor neuron diseases. Muscle Nerve 33:302–323PubMedGoogle Scholar
  3. 3.
    Kootstra NA, Verma IM (2003) Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 43:413–439PubMedGoogle Scholar
  4. 4.
    Wong LF, Goodhead L, Prat C et al (2006) Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther 17:1–9PubMedGoogle Scholar
  5. 5.
    Raymon HK, Thode S, Gage FH (1997) Application of ex vivo gene therapy in the treatment of Parkinson’s disease. Exp Neurol 144:82–91PubMedGoogle Scholar
  6. 6.
    Chan L, Fujimiya M, Kojima H (2003) In vivo gene therapy for diabetes mellitus. Trends Mol Med 9:430–435PubMedGoogle Scholar
  7. 7.
    Polak J, Hench L (2005) Gene therapy progress and prospects: in tissue engineering. Gene Ther 12:1725–1733PubMedGoogle Scholar
  8. 8.
    Davidson BL, Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4:353–364PubMedGoogle Scholar
  9. 9.
    Edry E, Lamprecht R, Wagner S et al (2011) Virally mediated gene manipulation in the adult CNS. Front Mol Neurosci 4:57PubMedPubMedCentralGoogle Scholar
  10. 10.
    Akli S, Caillaud C, Vigne E et al (1993) Transfer of a foreign gene into the brain using adenovirus vectors. Nat Genet 3:224–228PubMedGoogle Scholar
  11. 11.
    Davidson BL, Stein CS, Heth JA et al (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97:3428–3432PubMedPubMedCentralGoogle Scholar
  12. 12.
    Geller AI, Freese A (1990) Infection of cultured central nervous system neurons with a defective herpes simplex virus 1 vector results in stable expression of Escherichia coli beta-galactosidase. Proc Natl Acad Sci U S A 87:1149–1153PubMedPubMedCentralGoogle Scholar
  13. 13.
    Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267PubMedGoogle Scholar
  14. 14.
    Howarth JL, Lee YB, Uney JB (2009) Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 26:1–20PubMedPubMedCentralGoogle Scholar
  15. 15.
    Blomer U, Naldini L, Verma IM et al. (1995) Applications of gene therapy to the CNS. Hum Mol Genet 5, Spec No: 1397–1404Google Scholar
  16. 16.
    Naldini L, Blomer U, Gage FH et al (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93:11382–11388PubMedPubMedCentralGoogle Scholar
  17. 17.
    Vigna E, Naldini L (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2:308–316PubMedGoogle Scholar
  18. 18.
    Mitrophanous K, Yoon S, Rohll J et al (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 6:1808–1818PubMedGoogle Scholar
  19. 19.
    Azzouz M, Le T, Ralph GS et al (2004) Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest 114:1726–1731PubMedPubMedCentralGoogle Scholar
  20. 20.
    Azzouz M, Mazarakis N (2004) Non-primate EIAV-based lentiviral vectors as gene delivery system for motor neuron diseases. Curr Gene Ther 4:277–286PubMedGoogle Scholar
  21. 21.
    Wong LF, Ralph GS, Walmsley LE et al (2005) Lentiviral-mediated delivery of Bcl-2 or GDNF protects against excitotoxicity in the rat hippocampus. Mol Ther 11:89–95PubMedGoogle Scholar
  22. 22.
    Deglon N, Aebischer P (2002) Lentiviruses as vectors for CNS diseases. Curr Top Microbiol Immunol 261:191–209PubMedGoogle Scholar
  23. 23.
    Martin-Rendon E, Azzouz M, Mazarakis ND (2001) Lentiviral vectors for the treatment of neurodegenerative diseases. Curr Opin Mol Ther 3:476–481PubMedGoogle Scholar
  24. 24.
    Rohll JB, Mitrophanous KA, Martin-Rendon E et al (2002) Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol 346:466–500PubMedGoogle Scholar
  25. 25.
    Delenda C (2004) Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 6(Suppl 1):S125–S138PubMedGoogle Scholar
  26. 26.
    Baekelandt V, Eggermont K, Michiels M et al (2003) Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Ther 10:1933–1940PubMedGoogle Scholar
  27. 27.
    Pauwels K, Gijsbers R, Toelen J et al (2009) State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations. Curr Gene Ther 9:459–474PubMedGoogle Scholar
  28. 28.
    Themis M, Waddington SN, Schmidt M et al (2005) Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 12:763–771PubMedGoogle Scholar
  29. 29.
    Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40PubMedGoogle Scholar
  31. 31.
    Kotsopoulou E, Kim VN, Kingsman AJ et al (2000) A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol 74:4839–4852PubMedPubMedCentralGoogle Scholar
  32. 32.
    Anson DS, Limberis M (2004) An improved beta-galactosidase reporter gene. J Biotechnol 108:17–30PubMedGoogle Scholar
  33. 33.
    Sena-Esteves M, Tebbets JC, Steffens S et al (2004) Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 122:131–139PubMedGoogle Scholar
  34. 34.
    Broussau S, Jabbour N, Lachapelle G et al (2008) Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Mol Ther 16:500–507PubMedGoogle Scholar
  35. 35.
    Throm RE, Ouma AA, Zhou S et al (2009) Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood 113:5104–5110PubMedPubMedCentralGoogle Scholar
  36. 36.
    Stewart HJ, Fong-Wong L, Strickland I et al (2011) A stable producer cell line for the manufacture of a lentiviral vector for gene therapy of Parkinson’s disease. Hum Gene Ther 22:357–369PubMedGoogle Scholar
  37. 37.
    Stewart HJ, Leroux-Carlucci MA, Sion CJ et al (2009) Development of inducible EIAV-based lentiviral vector packaging and producer cell lines. Gene Ther 16:805–814PubMedGoogle Scholar
  38. 38.
    Dittgen T, Nimmerjahn A, Komai S et al (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci U S A 101:18206–18211PubMedPubMedCentralGoogle Scholar
  39. 39.
    Greenberg KP, Lee ES, Schaffer DV et al (2006) Gene delivery to the retina using lentiviral vectors. Adv Exp Med Biol 572:255–266PubMedGoogle Scholar
  40. 40.
    Miyoshi H, Takahashi M, Gage FH et al (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci U S A 94:10319–10323PubMedPubMedCentralGoogle Scholar
  41. 41.
    Bainbridge JW, Stephens C, Parsley K et al (2001) In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther 8:1665–1668PubMedGoogle Scholar
  42. 42.
    Lundberg C, Bjorklund T, Carlsson T et al (2008) Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr Gene Ther 8:461–473PubMedGoogle Scholar
  43. 43.
    Jakobsson J, Lundberg C (2006) Lentiviral vectors for use in the central nervous system. Mol Ther 13:484–493PubMedGoogle Scholar
  44. 44.
    Valori CF, Ning K, Wyles M et al (2008) Development and applications of non-HIV-based lentiviral vectors in neurological disorders. Curr Gene Ther 8:406–418PubMedGoogle Scholar
  45. 45.
    Tanase K, Teng Q, Krishnaney AA et al (2004) Cervical spinal cord delivery of a rabies G protein pseudotyped lentiviral vector in the SOD-1 transgenic mouse. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine 1:128–136PubMedGoogle Scholar
  46. 46.
    Wong LF, Yip PK, Battaglia A et al (2006) Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci 9:243–250PubMedGoogle Scholar
  47. 47.
    Kobayashi H, Carbonaro D, Pepper K et al (2005) Neonatal gene therapy of MPS I mice by intravenous injection of a lentiviral vector. Mol Ther 11:776–789PubMedGoogle Scholar
  48. 48.
    McIntyre C, Byers S, Anson DS (2010) Correction of mucopolysaccharidosis type IIIA somatic and central nervous system pathology by lentiviral-mediated gene transfer. J Gene Med 12:717–728PubMedGoogle Scholar
  49. 49.
    Fedorova E, Battini L, Prakash-Cheng A et al (2006) Lentiviral gene delivery to CNS by spinal intrathecal administration to neonatal mice. J Gene Med 8:414–424PubMedGoogle Scholar
  50. 50.
    Federici T, Taub JS, Baum GR et al (2011) Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther 19:852–859PubMedGoogle Scholar
  51. 51.
    Ikeda Y, Yonemitsu Y, Miyazaki M et al (2009) Stable retinal gene expression in nonhuman primates via subretinal injection of SIVagm-based lentiviral vectors. Hum Gene Ther 20:573–579PubMedGoogle Scholar
  52. 52.
    Coil DA, Miller AD (2004) Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J Virol 78:10920–10926PubMedPubMedCentralGoogle Scholar
  53. 53.
    Burns JC, Friedmann T, Driever W et al (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90:8033–8037PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kato S, Inoue K, Kobayashi K et al (2007) Efficient gene transfer via retrograde transport in rodent and primate brains using a human immunodeficiency virus type 1-based vector pseudotyped with rabies virus glycoprotein. Hum Gene Ther 18:1141–1151PubMedGoogle Scholar
  55. 55.
    Rosenblad C, Gronborg M, Hansen C et al (2000) In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin. Mol Cell Neurosci 15:199–214PubMedGoogle Scholar
  56. 56.
    Kaspar BK, Llado J, Sherkat N et al (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301:839–842PubMedGoogle Scholar
  57. 57.
    Kitagawa R, Miyachi S, Hanawa H et al (2007) Differential characteristics of HIV-based versus SIV-based lentiviral vector systems: gene delivery to neurons and axonal transport of expressed gene. Neurosci Res 57:550–558PubMedGoogle Scholar
  58. 58.
    Mazarakis ND, Azzouz M, Rohll JB et al (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 10:2109–2121PubMedGoogle Scholar
  59. 59.
    DePolo NJ, Reed JD, Sheridan PL et al (2000) VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2:218–222PubMedGoogle Scholar
  60. 60.
    Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–398PubMedPubMedCentralGoogle Scholar
  61. 61.
    Mentis GZ, Gravell M, Hamilton R et al (2006) Transduction of motor neurons and muscle fibers by intramuscular injection of HIV-1-based vectors pseudotyped with select rabies virus glycoproteins. J Neurosci Methods 157:208–217PubMedGoogle Scholar
  62. 62.
    Azzouz M, Ralph GS, Storkebaum E et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417PubMedGoogle Scholar
  63. 63.
    Wong LF, Azzouz M, Walmsley LE et al (2004) Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol Ther 9:101–111PubMedGoogle Scholar
  64. 64.
    Escors D, Breckpot K (2010) Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz) 58:107–119Google Scholar
  65. 65.
    Yang L, Bailey L, Baltimore D et al (2006) Targeting lentiviral vectors to specific cell types in vivo. Proc Natl Acad Sci U S A 103:11479–11484PubMedPubMedCentralGoogle Scholar
  66. 66.
    Lei Y, Joo KI, Wang P (2009) Engineering fusogenic molecules to achieve targeted transduction of enveloped lentiviral vectors. J Biol Eng 3:8PubMedPubMedCentralGoogle Scholar
  67. 67.
    Morizono K, Xie Y, Ringpis GE et al (2005) Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med 11:346–352PubMedGoogle Scholar
  68. 68.
    Anliker B, Abel T, Kneissl S et al (2011) Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors. Nat Methods 7:929–935Google Scholar
  69. 69.
    Funke S, Maisner A, Muhlebach MD et al (2008) Targeted cell entry of lentiviral vectors. Mol Ther 16:1427–1436PubMedPubMedCentralGoogle Scholar
  70. 70.
    Funke S, Schneider IC, Glaser S et al (2009) Pseudotyping lentiviral vectors with the wild-type measles virus glycoproteins improves titer and selectivity. Gene Ther 16:700–705PubMedGoogle Scholar
  71. 71.
    Morizono K, Bristol G, Xie YM et al (2001) Antibody-directed targeting of retroviral vectors via cell surface antigens. J Virol 75:8016–8020PubMedPubMedCentralGoogle Scholar
  72. 72.
    Ohno K, Sawai K, Iijima Y et al (1997) Cell-specific targeting of Sindbis virus vectors displaying IgG-binding domains of protein A. Nat Biotechnol 15:763–767PubMedGoogle Scholar
  73. 73.
    Lei Y, Joo KI, Zarzar J et al (2010) Targeting lentiviral vector to specific cell types through surface displayed single chain antibody and fusogenic molecule. Virol J 7:35PubMedPubMedCentralGoogle Scholar
  74. 74.
    Croyle MA, Yu QC, Wilson JM (2000) Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Hum Gene Ther 11:1713–1722PubMedGoogle Scholar
  75. 75.
    Kreppel F, Kochanek S (2008) Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther 16:16–29PubMedGoogle Scholar
  76. 76.
    Sailaja G, HogenEsch H, North A et al (2002) Encapsulation of recombinant adenovirus into alginate microspheres circumvents vector-specific immune response. Gene Ther 9:1722–1729PubMedPubMedCentralGoogle Scholar
  77. 77.
    Boerger AL, Snitkovsky S, Young JA (1999) Retroviral vectors preloaded with a viral receptor-ligand bridge protein are targeted to specific cell types. Proc Natl Acad Sci U S A 96:9867–9872PubMedPubMedCentralGoogle Scholar
  78. 78.
    Roux P, Jeanteur P, Piechaczyk M (1989) A versatile and potentially general approach to the targeting of specific cell types by retroviruses: application to the infection of human cells by means of major histocompatibility complex class I and class II antigens by mouse ecotropic murine leukemia virus-derived viruses. Proc Natl Acad Sci U S A 86:9079–9083PubMedPubMedCentralGoogle Scholar
  79. 79.
    Benitez JA, Segovia J (2003) Gene therapy targeting in the central nervous system. Curr Gene Ther 3:127–145PubMedGoogle Scholar
  80. 80.
    Kugler S, Lingor P, Scholl U et al (2003) Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units. Virology 311:89–95PubMedGoogle Scholar
  81. 81.
    Nettelbeck DM (2008) Cellular genetic tools to control oncolytic adenoviruses for virotherapy of cancer. J Mol Med (Berl) 86:363–377Google Scholar
  82. 82.
    Glover CP, Bienemann AS, Heywood DJ et al (2002) Adenoviral-mediated, high-level, cell-specific transgene expression: a SYN1-WPRE cassette mediates increased transgene expression with no loss of neuron specificity. Mol Ther 5:509–516PubMedGoogle Scholar
  83. 83.
    Nathanson JL, Yanagawa Y, Obata K et al (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161:441–450PubMedPubMedCentralGoogle Scholar
  84. 84.
    Peel AL, Zolotukhin S, Schrimsher GW et al (1997) Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther 4:16–24PubMedGoogle Scholar
  85. 85.
    Klein RL, Meyer EM, Peel AL et al (1998) Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol 150:183–194PubMedGoogle Scholar
  86. 86.
    Zhang GR, Wang X, Yang T et al (2000) A tyrosine hydroxylase-neurofilament chimeric promoter enhances long-term expression in rat forebrain neurons from helper virus-free HSV-1 vectors. Brain Res Mol Brain Res 84:17–31PubMedGoogle Scholar
  87. 87.
    Loftus SK, Erickson RP, Walkley SU et al (2002) Rescue of neurodegeneration in Niemann-Pick C mice by a prion-promoter-driven Npc1 cDNA transgene. Hum Mol Genet 11:3107–3114PubMedGoogle Scholar
  88. 88.
    Sirin O, Park F (2003) Regulating gene expression using self-inactivating lentiviral vectors containing the mifepristone-inducible system. Gene 323:67–77PubMedGoogle Scholar
  89. 89.
    Vigna E, Cavalieri S, Ailles L et al (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 5:252–261PubMedGoogle Scholar
  90. 90.
    Galimi F, Saez E, Gall J et al (2005) Development of ecdysone-regulated lentiviral vectors. Mol Ther 11:142–148PubMedGoogle Scholar
  91. 91.
    Georgievska B, Jakobsson J, Persson E et al (2004) Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum Gene Ther 15:934–944PubMedGoogle Scholar
  92. 92.
    Brown BD, Gentner B, Cantore A et al (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25:1457–1467PubMedGoogle Scholar
  93. 93.
    Brown BD, Venneri MA, Zingale A et al (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12:585–591PubMedGoogle Scholar
  94. 94.
    Stegmeier F, Hu G, Rickles RJ et al (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A 102:13212–13217PubMedPubMedCentralGoogle Scholar
  95. 95.
    Labrador M, Corces VG (2002) Setting the boundaries of chromatin domains and nuclear organization. Cell 111:151–154PubMedGoogle Scholar
  96. 96.
    Sarkis C, Philippe S, Mallet J et al (2008) Non-integrating lentiviral vectors. Curr Gene Ther 8:430–437PubMedGoogle Scholar
  97. 97.
    Apolonia L, Waddington SN, Fernandes C et al (2007) Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol Ther 15:1947–1954PubMedGoogle Scholar
  98. 98.
    Philippe S, Sarkis C, Barkats M et al (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci U S A 103:17684–17689PubMedPubMedCentralGoogle Scholar
  99. 99.
    Rahim AA, Wong AM, Howe SJ et al (2009) Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene Ther 16:509–520PubMedGoogle Scholar
  100. 100.
    Lombardo A, Genovese P, Beausejour CM et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306PubMedGoogle Scholar
  101. 101.
    Baum C (2007) Insertional mutagenesis in gene therapy and stem cell biology. Curr Opin Hematol 14:337–342PubMedGoogle Scholar
  102. 102.
    Blomer U, Kafri T, Randolph-Moore L et al (1998) Bcl-xL protects adult septal cholinergic neurons from axotomized cell death. Proc Natl Acad Sci U S A 95:2603–2608PubMedPubMedCentralGoogle Scholar
  103. 103.
    de Almeida LP, Ross CA, Zala D et al (2002) Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J Neurosci 22:3473–3483PubMedGoogle Scholar
  104. 104.
    Deglon N, Hantraye P (2005) Viral vectors as tools to model and treat neurodegenerative disorders. J Gene Med 7:530–539PubMedGoogle Scholar
  105. 105.
    Regulier E, Trottier Y, Perrin V et al (2003) Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum. Hum Mol Genet 12:2827–2836PubMedGoogle Scholar
  106. 106.
    Kirik D, Annett LE, Burger C et al (2003) Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:2884–2889PubMedPubMedCentralGoogle Scholar
  107. 107.
    Kirik D, Rosenblad C, Burger C et al (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791PubMedGoogle Scholar
  108. 108.
    Lo Bianco C, Ridet JL, Schneider BL et al (2002) alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci U S A 99:10813–10818PubMedPubMedCentralGoogle Scholar
  109. 109.
    Lo Bianco C, Schneider BL, Bauer M et al (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:17510–17515PubMedPubMedCentralGoogle Scholar
  110. 110.
    Tiscornia G, Tergaonkar V, Galimi F et al (2004) CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proc Natl Acad Sci U S A 101:7347–7351PubMedPubMedCentralGoogle Scholar
  111. 111.
    Ventura A, Meissner A, Dillon CP et al (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci U S A 101:10380–10385PubMedPubMedCentralGoogle Scholar
  112. 112.
    Akkina RK, Walton RM, Chen ML et al (1996) High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 70:2581–2585PubMedPubMedCentralGoogle Scholar
  113. 113.
    Reiser J, Harmison G, Kluepfel-Stahl S et al (1996) Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc Natl Acad Sci U S A 93:15266–15271PubMedPubMedCentralGoogle Scholar
  114. 114.
    Reiser J, Lai Z, Zhang XY et al (2000) Development of multigene and regulated lentivirus vectors. J Virol 74:10589–10599PubMedPubMedCentralGoogle Scholar
  115. 115.
    Bartz SR, Rogel ME, Emerman M (1996) Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. J Virol 70:2324–2331PubMedPubMedCentralGoogle Scholar
  116. 116.
    Scherr M, Battmer K, Blomer U et al (2001) Quantitative determination of lentiviral vector particle numbers by real-time PCR. Biotechniques 31:520, 522, 524, passimPubMedGoogle Scholar
  117. 117.
    Logan AC, Nightingale SJ, Haas DL et al (2004) Factors influencing the titer and infectivity of lentiviral vectors. Hum Gene Ther 15:976–988PubMedGoogle Scholar
  118. 118.
    Zhang XY, La Russa VF, Bao L et al (2002) Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther 5:555–565PubMedGoogle Scholar
  119. 119.
    Chang LJ, Zaiss AK (2002) Lentiviral vectors. Preparation and use. Methods Mol Med 69:303–318PubMedGoogle Scholar
  120. 120.
    Srinivasakumar N (2002) Packaging cell system for lentivirus vectors. Preparation and use. Methods Mol Med 69:275–302PubMedGoogle Scholar
  121. 121.
    Follenzi A, Naldini L (2002) HIV-based vectors. Preparation and use. Methods Mol Med 69:259–274PubMedGoogle Scholar
  122. 122.
    Carmo M, Peixoto C, Coroadinha AS et al (2004) Quantitation of MLV-based retroviral vectors using real-time RT-PCR. J Virol Methods 119:115–119PubMedGoogle Scholar
  123. 123.
    Lizee G, Aerts JL, Gonzales MI et al (2003) Real-time quantitative reverse transcriptase-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Hum Gene Ther 14:497–507PubMedGoogle Scholar
  124. 124.
    Zufferey R, Donello JE, Trono D et al (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892PubMedPubMedCentralGoogle Scholar
  125. 125.
    Geraerts M, Willems S, Baekelandt V et al (2006) Comparison of lentiviral vector titration methods. BMC Biotechnol 6:34PubMedPubMedCentralGoogle Scholar
  126. 126.
    Ikeda Y, Collins MK, Radcliffe PA et al (2002) Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Ther 9:932–938PubMedGoogle Scholar
  127. 127.
    Sastry L, Johnson T, Hobson MJ et al (2002) Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 9:1155–1162PubMedGoogle Scholar
  128. 128.
    Higashikawa F, Chang L (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280:124–131PubMedGoogle Scholar
  129. 129.
    Kwon YJ, Hung G, Anderson WF et al (2003) Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis. J Virol 77:5712–5720PubMedPubMedCentralGoogle Scholar
  130. 130.
    Froelich S, Tai A, Kennedy K et al (2011) Pseudotyping lentiviral vectors with aura virus envelope glycoproteins for DC-SIGN-mediated transduction of dendritic cells. Hum Gene Ther 22:1281–1291PubMedPubMedCentralGoogle Scholar
  131. 131.
    Watson DJ, Kobinger GP, Passini MA et al (2002) Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 5:528–537PubMedGoogle Scholar
  132. 132.
    Sandrin V, Muriaux D, Darlix JL et al (2004) Intracellular trafficking of Gag and Env proteins and their interactions modulate pseudotyping of retroviruses. J Virol 78:7153–7164PubMedPubMedCentralGoogle Scholar
  133. 133.
    Zhang XY, La Russa VF, Reiser J (2004) Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 78:1219–1229PubMedPubMedCentralGoogle Scholar
  134. 134.
    Kim YS, Wielgosz MM, Hargrove P et al (2010) Transduction of human primitive repopulating hematopoietic cells with lentiviral vectors pseudotyped with various envelope proteins. Mol Ther 18:1310–1317PubMedPubMedCentralGoogle Scholar
  135. 135.
    Steffens S, Tebbets J, Kramm CM et al (2004) Transduction of human glial and neuronal tumor cells with different lentivirus vector pseudotypes. J Neurooncol 70:281–288PubMedGoogle Scholar
  136. 136.
    Stitz J, Buchholz CJ, Engelstadter M et al (2000) Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 273:16–20PubMedGoogle Scholar
  137. 137.
    Kiem HP, Heyward S, Winkler A et al (1997) Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons. Blood 90:4638–4645PubMedGoogle Scholar
  138. 138.
    Miletic H, Bruns M, Tsiakas K et al (1999) Retroviral vectors pseudotyped with lymphocytic choriomeningitis virus. J Virol 73:6114–6116PubMedPubMedCentralGoogle Scholar
  139. 139.
    Miletic H, Fischer YH, Neumann H et al (2004) Selective transduction of malignant glioma by lentiviral vectors pseudotyped with lymphocytic choriomeningitis virus glycoproteins. Hum Gene Ther 15:1091–1100PubMedGoogle Scholar
  140. 140.
    Stein CS, Martins I, Davidson BL (2005) The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain. Mol Ther 11:382–389PubMedGoogle Scholar
  141. 141.
    Frecha C, Levy C, Costa C et al (2011) Measles virus glycoprotein-pseudotyped lentiviral vector-mediated gene transfer into quiescent lymphocytes requires binding to both SLAM and CD46 entry receptors. J Virol 85:5975–5985PubMedPubMedCentralGoogle Scholar
  142. 142.
    Humbert JM, Frecha C, Amirache Bouafia F et al (2012) Measles virus glycoprotein-pseudotyped lentiviral vectors are highly superior to vesicular stomatitis virus G pseudotypes for genetic modification of monocyte-derived dendritic cells. J Virol 86:5192–5203PubMedPubMedCentralGoogle Scholar
  143. 143.
    Hanawa H, Kelly PF, Nathwani AC et al (2002) Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol Ther 5:242–251PubMedGoogle Scholar
  144. 144.
    Muhlebach MD, Schmitt I, Steidl S et al (2003) Transduction efficiency of MLV but not of HIV-1 vectors is pseudotype dependent on human primary T lymphocytes. J Mol Med (Berl) 81:801–810Google Scholar
  145. 145.
    Carpentier DC, Vevis K, Trabalza A et al (2011) Enhanced pseudotyping efficiency of HIV-1 lentiviral vectors by a rabies/vesicular stomatitis virus chimeric envelope glycoprotein. Gene Ther 19:761–774PubMedGoogle Scholar
  146. 146.
    Trabalza A, Eleftheriadou I, Sgourou A et al (2014) Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins. J Virol 88:2877–2890PubMedPubMedCentralGoogle Scholar
  147. 147.
    Kang Y, Stein CS, Heth JA et al (2002) In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J Virol 76:9378–9388PubMedPubMedCentralGoogle Scholar
  148. 148.
    Kobayashi M, Iida A, Ueda Y et al (2003) Pseudotyped lentivirus vectors derived from simian immunodeficiency virus SIVagm with envelope glycoproteins from paramyxovirus. J Virol 77:2607–2614PubMedPubMedCentralGoogle Scholar
  149. 149.
    Kowolik CM, Yee JK (2002) Preferential transduction of human hepatocytes with lentiviral vectors pseudotyped by Sendai virus F protein. Mol Ther 5:762–769PubMedGoogle Scholar
  150. 150.
    Eleftheriadou I, Trabalza A, Ellison S et al (2014) Specific retrograde transduction of spinal motor neurons using lentiviral vectors targeted to presynaptic NMJ receptors. Mol Ther 22:1285PubMedGoogle Scholar
  151. 151.
    Trabalza A, Georgiadis C, Eleftheriadou I et al (2012) Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors. Gene Ther 20:723–732PubMedGoogle Scholar
  152. 152.
    Park F, Ohashi K, Kay MA (2000) Therapeutic levels of human factor VIII and IX using HIV-1-based lentiviral vectors in mouse liver. Blood 96:1173–1176PubMedGoogle Scholar
  153. 153.
    Azzouz M, Martin-Rendon E, Barber RD et al (2002) Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci 22:10302–10312PubMedGoogle Scholar
  154. 154.
    During MJ, Kaplitt MG, Stern MB et al (2001) Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther 12:1589–1591PubMedGoogle Scholar
  155. 155.
    Ralph GS, Radcliffe PA, Day DM et al (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11:429–433PubMedGoogle Scholar
  156. 156.
    Raoul C, Abbas-Terki T, Bensadoun JC et al (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11:423–428PubMedGoogle Scholar
  157. 157.
    Ahmed Z, Dent RG, Suggate EL et al (2005) Disinhibition of neurotrophin-induced dorsal root ganglion cell neurite outgrowth on CNS myelin by siRNA-mediated knockdown of NgR, p75NTR and Rho-A. Mol Cell Neurosci 28:509–523PubMedGoogle Scholar
  158. 158.
    Harper SQ, Staber PD, He X et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102:5820–5825PubMedPubMedCentralGoogle Scholar
  159. 159.
    Singer O, Marr RA, Rockenstein E et al (2005) Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 8:1343–1349PubMedGoogle Scholar
  160. 160.
    Azzouz M, Kingsman SM, Mazarakis ND (2004) Lentiviral vectors for treating and modeling human CNS disorders. J Gene Med 6:951–962PubMedGoogle Scholar
  161. 161.
    Bensadoun JC, Deglon N, Tseng JL et al (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164:15–24PubMedGoogle Scholar
  162. 162.
    Deglon N, Tseng JL, Bensadoun JC et al (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson’s disease. Hum Gene Ther 11:179–190PubMedGoogle Scholar
  163. 163.
    Kordower JH, Emborg ME, Bloch J et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773PubMedGoogle Scholar
  164. 164.
    Azzouz M, Ralph S, Wong LF et al (2004) Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. Neuroreport 15:985–990PubMedGoogle Scholar
  165. 165.
    Kirik D, Georgievska B, Bjorklund A (2004) Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci 7:105–110PubMedGoogle Scholar
  166. 166.
    de Almeida LP, Zala D, Aebischer P et al (2001) Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington’s disease. Neurobiol Dis 8:433–446PubMedGoogle Scholar
  167. 167.
    Hottinger AF, Azzouz M, Deglon N et al (2000) Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus. J Neurosci 20:5587–5593PubMedGoogle Scholar
  168. 168.
    Blesch A, Conner J, Pfeifer A et al (2005) Regulated lentiviral NGF gene transfer controls rescue of medial septal cholinergic neurons. Mol Ther 11:916–925PubMedGoogle Scholar
  169. 169.
    Ruitenberg MJ, Plant GW, Hamers FP et al (2003) Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia: effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord. J Neurosci 23:7045–7058PubMedGoogle Scholar
  170. 170.
    Blesch A, Tuszynski MH (2004) Gene therapy and cell transplantation for Alzheimer’s disease and spinal cord injury. Yonsei Med J 45(Suppl):28–31PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Gene Therapy, Division of Brain Sciences, Centre for Neuroinflammation & Neurodegeneration, Faculty of MedicineImperial College LondonLondonUK

Personalised recommendations