Advertisement

Gene Therapy Approaches Using Reproducible and Fully Penetrant Lentivirus-Mediated Endogenous Glioma Models

  • John Lynes
  • Carl Koschmann
  • Mia Wibowo
  • Vandana Saxena
  • Marianela Candolfi
  • Mariela A. Moreno Ayala
  • Maria G. CastroEmail author
  • Pedro R. Lowenstein
Protocol
Part of the Neuromethods book series (NM, volume 98)

Abstract

Animal models have proven invaluable for progress toward greater understanding of the etiology, pathogenesis, and genetics of a wide range of human diseases. The development of relevant brain tumor animal models is a critical resource for building our understanding of cancers that arise within the brain and for the development of novel therapies. The central role of these models is particularly apparent for gliomas, which are common and devastating primary brain tumors. Effective models accurately demonstrate pathological features and behavior that are analogous to the human disease. Models aim to develop tumors with high penetrance and low latency, features that are ideal for preclinical therapeutic development. Lentiviral vector-induced models fulfill these requirements while giving investigators excellent control over the genetic profile of resulting tumors. This flexibility is especially relevant in the context of recent advances in the understanding of the genetic lesions found in human grade IV glioma, glioblastoma multiforme (GBM). Further, these endogenous tumor models would be ideal for the testing of novel gene therapy strategies which could potentially be implemented in Phase 1 clinical trials for these devastating human brain cancers.

Key words

Animal model Lentivirus Glioma Glioblastoma Gene therapy p53 PDGF AKT HRAS 

Notes

Acknowledgments

This work was supported by National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) Grants 1UO1-NS052465, UO1-NS052465-S1, 1R21-NSO54143, 1RO1-NS057711, 1RO1-NS074387, MICHR Pilot R14 U040007, and BioInterfaces Institute, University of Michigan U042841 to M.G.C.; NIH/NINDS Grants 1RO1-NS054193, 1RO1-NS061107, 1RO1-NS082311, R21-NS084275, and M-Cube U036756 University of Michigan to P.R.L.; the Department of Neurosurgery, University of Michigan School of Medicine; the Michigan Institute for Clinical and Health Research, NIH UL1-TR000433; University of Michigan Cancer Biology Training Grant, NIH/NCI (National Cancer Institute) T32-CA009676; University of Michigan Training in Clinical and Basic Neuroscience, NIH/NINDS T32-NS007222; and the University of Michigan Medical Scientist Training Program, NIH/NIGMS (National Institute of General Medicine Sciences) T32-GM007863, and the National Institutes of Health through the University of Michigan’s Cancer Center Support Grant P30-CA046592. C.K. is supported by an NIH T32 training grant under Dr. James Ferrara (2-T32-HL-007622-26-A1). M.C. receives financial support from the National Council for Science and Technology (PIP 114-201101-00353, CONICET, Argentina). M.A.M.A. is supported by a doctoral fellowship from CONICET (Argentina). We are grateful to Dr. Karin Murasko for her academic leadership and D. Tomford and S. Napolitan for their superb administrative support.

References

  1. 1.
    Grossman SA, Ye X, Piantadosi S et al (2010) Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res 16:2443–2449PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Candolfi M, Curtin JF, Nichols WS et al (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85:133–148PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Chow LM, Baker SJ (2012) Capturing the molecular and biological diversity of high-grade astrocytoma in genetically engineered mouse models. Oncotarget 3:67–77PubMedCentralPubMedGoogle Scholar
  5. 5.
    Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ducray F, Marie Y, Sanson M (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:2248–2249, author reply 2249PubMedCrossRefGoogle Scholar
  8. 8.
    Assanah M, Lochhead R, Ogden A et al (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26:6781–6790PubMedCrossRefGoogle Scholar
  9. 9.
    Dai C, Celestino JC, Okada Y et al (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Dai C, Lyustikman Y, Shih A et al (2005) The characteristics of astrocytomas and oligodendrogliomas are caused by two distinct and interchangeable signaling formats. Neoplasia 7:397–406PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    de Vries NA, Bruggeman SW, Hulsman D et al (2010) Rapid and robust transgenic high-grade glioma mouse models for therapy intervention studies. Clin Cancer Res 16:3431–3441PubMedCrossRefGoogle Scholar
  12. 12.
    Hambardzumyan D, Amankulor NM, Helmy KY (2009) Modeling adult gliomas using RCAS/t-va technology. Transl Oncol 2:89–95PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Holland EC, Celestino J, Dai C et al (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57PubMedCrossRefGoogle Scholar
  14. 14.
    Lei L, Sonabend AM, Guarnieri P et al (2011) Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS One 6:e20041PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Marumoto T, Tashiro A, Friedmann-Morvinski D et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15:110–116PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Uhrbom L, Dai C, Celestino JC et al (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558PubMedGoogle Scholar
  17. 17.
    Wiesner SM, Decker SA, Larson JD et al (2009) De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer Res 69:431–439PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Lynes JWM, Koschmann C, Baker G et al (2014) Lentiviral induced high-grade gliomas in rats: the effects of PDGFB, HRAS-G12V, AKT and IDH1-R132H. Neurotherapeutics 11(3):623–635PubMedCrossRefGoogle Scholar
  19. 19.
    Rankin SL, Zhu G, Baker SJ (2012) Review: insights gained from modelling high-grade glioma in the mouse. Neuropathol Appl Neurobiol 38:254–270PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267PubMedCrossRefGoogle Scholar
  21. 21.
    Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31:159–173PubMedCrossRefGoogle Scholar
  22. 22.
    Immonen A, Vapalahti M, Tyynela K et al (2004) AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 10:967–972PubMedCrossRefGoogle Scholar
  23. 23.
    Maatta AM, Samaranayake H, Pikkarainen J et al (2009) Adenovirus mediated herpes simplex virus-thymidine kinase/ganciclovir gene therapy for resectable malignant glioma. Curr Gene Ther 9:356–367PubMedCrossRefGoogle Scholar
  24. 24.
    Chiocca EA, Aguilar LK, Bell SD et al (2011) Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J Clin Oncol 29:3611–3619PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Paxinos G, Watson C (1998) The rat atlas in stereotaxic coordinates. Elsevier Science & Technology Books. 256 pGoogle Scholar
  26. 26.
    Barcia C, Gerdes C, Xiong WD et al (2006) Immunological thresholds in neurological gene therapy: highly efficient elimination of transduced cells might be related to the specific formation of immunological synapses between T cells and virus-infected brain cells. Neuron Glia Biol 2:309–322PubMedCrossRefGoogle Scholar
  27. 27.
    Thomas CE, Birkett D, Anozie I et al (2001) Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol Ther 3:36–46PubMedCrossRefGoogle Scholar
  28. 28.
    Thomas CE, Schiedner G, Kochanek S et al (2001) Preexisting antiadenoviral immunity is not a barrier to efficient and stable transduction of the brain, mediated by novel high-capacity adenovirus vectors. Hum Gene Ther 12:839–846PubMedCrossRefGoogle Scholar
  29. 29.
    Barcia C, Thomas CE, Curtin JF et al (2006) In vivo mature immunological synapses forming SMACs mediate clearance of virally infected astrocytes from the brain. J Exp Med 203:2095–2107PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Dewey RA, Morrissey G, Cowsill CM et al (1999) Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nat Med 5:1256–1263PubMedCrossRefGoogle Scholar
  31. 31.
    Puntel M, Kroeger KM, Sanderson NS et al (2010) Gene tranfer into at brain using adenoviral vectors Curr Protoc Neurosci. 50:4.24:4.24:1–4.24.49Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • John Lynes
    • 1
    • 3
  • Carl Koschmann
    • 2
  • Mia Wibowo
    • 1
    • 3
  • Vandana Saxena
    • 1
    • 3
  • Marianela Candolfi
    • 4
  • Mariela A. Moreno Ayala
    • 4
  • Maria G. Castro
    • 1
    • 3
    Email author
  • Pedro R. Lowenstein
    • 1
    • 3
  1. 1.Department of Neurosurgery, School of MedicineUniversity of MichiganAnn ArborUSA
  2. 2.Department of Pediatric Hematology/OncologyUniversity of MichiganAnn ArborUSA
  3. 3.Department of Cell and Developmental Biology, School of MedicineUniversity of MichiganAnn ArborUSA
  4. 4.Instituto de Investigaciones Biomedicas (INBIOMED), National Council for Science and Technology (CONICET)University of Buenos Aires School of MedicineBuenos AiresArgentina

Personalised recommendations