Advertisement

Gene Therapy in Spinal Muscular Atrophy (SMA) Models Using Intracerebroventricular Injection into Neonatal Mice

  • Monir ShababiEmail author
  • Erkan Y. Osman
  • Christian L. Lorson
Protocol
Part of the Neuromethods book series (NM, volume 98)

Abstract

Successful gene therapy for neurodegenerative disorders in clinical trials depends upon the success of the gene therapy applications in preclinical models of the disease. Preclinical animal studies often proceed to larger animal models and are subsequently incorporated into the final design of the clinical trials. Recent gene therapy advancements with preclinical animal models of spinal muscular atrophy (SMA) have made the move from the bench research to an actual treatment a more achievable reality. In this chapter, we gathered the most recent gene therapy advancements in SMA animal models and discuss the possibility of gene therapy clinical trials. We will also discuss the outcome of our gene therapy approaches in the transduced tissues of SMA mice using single-stranded and self-complementary AAV vectors. One method of the transgene delivery into the central nervous system (CNS) is intracerebroventricular (ICV) injection. In this chapter, we provide a detailed protocol of the ICV injection into the murine brain at early postnatal time points with photographs demonstrating each step of the process.

Key words

Gene therapy AAV vectors SMN SMA ICV injection 

Notes

Acknowledgments

We like to thank John Marston for the maintenance of the mouse colony and Katie Robinson for her assistance in harvesting the organs. This work was supported by grants from MDA and SMA Europe (M.S.) and Fight SMA (C.L.L.).

References

  1. 1.
    Hester ME, Foust KD, Kaspar RW et al (2009) AAV as a gene transfer vector for the treatment of neurological disorders: novel treatment thoughts for ALS. Curr Gene Ther 9(5):428–433PubMedCrossRefGoogle Scholar
  2. 2.
    Gray SJ, Woodard KT, Samulski RJ (2010) Viral vectors and delivery strategies for CNS gene therapy. Ther Deliv 1(4):517–534PubMedCrossRefGoogle Scholar
  3. 3.
    Foust KD, Wang X, McGovern VL et al (2010) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 28(3):271–274PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Mandel RJ, Manfredsson FP, Foust KD et al (2006) Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders. Mol Ther 13(3):463–483PubMedCrossRefGoogle Scholar
  5. 5.
    Murphy SR, Chang CC, Dogbevia G et al (2013) Acat1 knockdown gene therapy decreases amyloid-beta in a mouse model of Alzheimer’s disease. Mol Ther 21(8):1497–1506PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Low K, Aebischer P, Schneider BL (2013) Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles. Hum Gene Ther 24(6):613–629PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Shimada M, Abe S, Takahashi T et al (2013) Prophylaxis and treatment of Alzheimer’s disease by delivery of an adeno-associated virus encoding a monoclonal antibody targeting the amyloid Beta protein. PLoS One 8(3):e57606PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bartus RT, Baumann TL, Brown L et al (2013) Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating “clinical proof-of-concept” for AAV-neurturin (CERE-120) in Parkinson’s disease. Neurobiol Aging 34(1):35–61PubMedCrossRefGoogle Scholar
  9. 9.
    Ramaswamy S, Kordower JH (2012) Gene therapy for Huntington’s disease. Neurobiol Dis 48(2):243–254PubMedCrossRefGoogle Scholar
  10. 10.
    Wu P, Phillips MI, Bui J et al (1998) Adeno-associated virus vector-mediated transgene integration into neurons and other nondividing cell targets. J Virol 72(7):5919–5926PubMedCentralPubMedGoogle Scholar
  11. 11.
    Lim ST, Airavaara M, Harvey BK (2010) Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res 61(1):14–26PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Shevtsova Z, Malik JM, Michel U et al (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90(1):53–59PubMedCrossRefGoogle Scholar
  13. 13.
    Eberling JL, Jagust WJ, Christine CW et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983PubMedCrossRefGoogle Scholar
  14. 14.
    Christine CW, Starr PA, Larson PS et al (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73(20):1662–1669PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Mittermeyer G, Christine CW, Rosenbluth KH et al (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23(4):377–381PubMedCrossRefGoogle Scholar
  16. 16.
    Tuszynski MH, Blesch A (2004) Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer’s disease. Prog Brain Res 146:441–449PubMedGoogle Scholar
  17. 17.
    Mandel RJ (2010) CERE-110, an adeno-associated virus-based gene delivery vector expressing human nerve growth factor for the treatment of Alzheimer’s disease. Curr Opin Mol Ther 12(2):240–247PubMedGoogle Scholar
  18. 18.
    Janson C, McPhee S, Bilaniuk L et al (2002) Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther 13(11):1391–1412PubMedCrossRefGoogle Scholar
  19. 19.
    Worgall S, Sondhi D, Hackett NR et al (2008) Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 19(5):463–474PubMedCrossRefGoogle Scholar
  20. 20.
    Lefebvre S, Burglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165PubMedCrossRefGoogle Scholar
  21. 21.
    Dominguez E, Marais T, Chatauret N et al (2011) Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 20(4):681–693PubMedCrossRefGoogle Scholar
  22. 22.
    Valori CF, Ning K, Wyles M et al (2010) Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med 2(35):35ra42PubMedGoogle Scholar
  23. 23.
    Glascock JJ, Osman EY, Wetz MJ et al (2012) Decreasing disease severity in symptomatic, Smn(−/−);SMN2(+/+), spinal muscular atrophy mice following scAAV9-SMN delivery. Hum Gene Ther 23(3):330–335PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Glascock JJ, Shababi M, Wetz MJ et al (2012) Direct central nervous system delivery provides enhanced protection following vector mediated gene replacement in a severe model of spinal muscular atrophy. Biochem Biophys Res Commun 417(1):376–381PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Pearn J (1980) Classification of spinal muscular atrophies. Lancet 1(8174):919–922PubMedCrossRefGoogle Scholar
  26. 26.
    Burnett BG, Crawford TO, Sumner CJ (2009) Emerging treatment options for spinal muscular atrophy. Curr Treat Options Neurol 11(2):90–101PubMedCrossRefGoogle Scholar
  27. 27.
    Bosboom WM, Vrancken AF, van den Berg LH et al (2009) Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 1, CD006282PubMedGoogle Scholar
  28. 28.
    Lorson CL, Strasswimmer J, Yao JM et al (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19(1):63–66PubMedCrossRefGoogle Scholar
  29. 29.
    Lorson CL, Hahnen E, Androphy EJ et al (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96(11):6307–6311PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Monani UR, Lorson CL, Parsons DW et al (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8(7):1177–1183PubMedCrossRefGoogle Scholar
  31. 31.
    Wirth B, Brichta L, Hahnen E (2006) Spinal muscular atrophy: from gene to therapy. Semin Pediatr Neurol 13(2):121–131PubMedCrossRefGoogle Scholar
  32. 32.
    Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10(8):597–609PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Coady TH, Lorson CL (2011) SMN in spinal muscular atrophy and snRNP biogenesis. Wiley Interdiscip Rev RNA 2(4):546–564PubMedCrossRefGoogle Scholar
  34. 34.
    Lotti F, Imlach WL, Saieva L et al (2012) An SMN-dependent U12 splicing event essential for motor circuit function. Cell 151(2):440–454PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Imlach WL, Beck ES, Choi BJ et al (2012) SMN is required for sensory-motor circuit function in Drosophila. Cell 151(2):427–439PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Bechade C, Rostaing P, Cisterni C et al (1999) Subcellular distribution of survival motor neuron (SMN) protein: possible involvement in nucleocytoplasmic and dendritic transport. Eur J Neurosci 11(1):293–304PubMedCrossRefGoogle Scholar
  37. 37.
    Jablonka S, Schrank B, Kralewski M et al (2000) Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Hum Mol Genet 9(3):341–346PubMedCrossRefGoogle Scholar
  38. 38.
    Pagliardini S, Giavazzi A, Setola V et al (2000) Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Hum Mol Genet 9(1):47–56PubMedCrossRefGoogle Scholar
  39. 39.
    Shababi M, Lorson CL, Rudnik-Schoneborn SS (2014) Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease? J Anat 224(1):15–28PubMedCrossRefGoogle Scholar
  40. 40.
    Monani UR, Coovert DD, Burghes AH (2000) Animal models of spinal muscular atrophy. Hum Mol Genet 9(16):2451–2457PubMedCrossRefGoogle Scholar
  41. 41.
    Le TT, Pham LT, Butchbach ME et al (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14(6):845–857PubMedCrossRefGoogle Scholar
  42. 42.
    Singh NN, Shishimorova M, Cao LC et al (2009) A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol 6(3):341–350PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Singh NN, Hollinger K, Bhattacharya D et al (2010) An antisense microwalk reveals critical role of an intronic position linked to a unique long-distance interaction in pre-mRNA splicing. RNA 16(6):1167–1181PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Osman EY, Yen PF, Lorson CL (2012) Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy. Mol Ther 20(1):119–126PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Hua Y, Sahashi K, Hung G et al (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24(15):1634–1644PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Hua Y, Sahashi K, Rigo F et al (2011) Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478(7367):123–126PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Passini MA, Bu J, Richards AM et al (2011) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3(72):72ra18PubMedCentralPubMedGoogle Scholar
  48. 48.
    Porensky PN, Mitrpant C, McGovern VL et al (2012) A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 21(7):1625–1638PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Zhou H, Janghra N, Mitrpant C et al (2013) A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice. Hum Gene Ther 24(3):331–342PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Lorson CL, Rindt H, Shababi M (2010) Spinal muscular atrophy: mechanisms and therapeutic strategies. Hum Mol Genet 19(R1):R111–R118PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Cherry JJ, Androphy EJ (2012) Therapeutic strategies for the treatment of spinal muscular atrophy. Future Med Chem 4(13):1733–1750PubMedCrossRefGoogle Scholar
  52. 52.
    Lorson MA, Lorson CL (2012) SMN-inducing compounds for the treatment of spinal muscular atrophy. Future Med Chem 4(16):2067–2084PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Shababi M, Mattis VB, Lorson CL (2010) Therapeutics that directly increase SMN expression to treat spinal muscular atrophy. Drug News Perspect 23(8):475–482PubMedGoogle Scholar
  54. 54.
    Lewelt A, Newcomb TM, Swoboda KJ (2012) New therapeutic approaches to spinal muscular atrophy. Curr Neurol Neurosci Rep 12(1):42–53PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Azzouz M, Le T, Ralph GS et al (2004) Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest 114(12):1726–1731PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    McCarty DM (2008) Self-complementary AAV vectors: advances and applications. Mol Ther 16(10):1648–1656PubMedCrossRefGoogle Scholar
  57. 57.
    McCarty DM, Fu H, Monahan PE et al (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 10(26):2112–2118PubMedCrossRefGoogle Scholar
  58. 58.
    Gray JT, Zolotukhin S (2011) Design and construction of functional AAV vectors. Methods Mol Biol 807:25–46PubMedCrossRefGoogle Scholar
  59. 59.
    Passini MA, Bu J, Roskelley EM et al (2010) CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 120(4):1253–1264PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Le TT, McGovern VL, Alwine IE et al (2011) Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet 20(18):3578–3591PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Lutz CM, Kariya S, Patruni S et al (2011) Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest 121(8):3029–3041PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Foust KD, Nurre E, Montgomery CL et al (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Duque S, Joussemet B, Riviere C et al (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17(7):1187–1196PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Bevan AK, Hutchinson KR, Foust KD et al (2010) Early heart failure in the SMN{Delta}7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum Mol Genet 19(20):3895–3905PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Heier CR, Satta R, Lutz C et al (2010) Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. Hum Mol Genet 19(20):3906–3918PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Shababi M, Habibi J, Yang HT et al (2010) Cardiac defects contribute to the pathology of Spinal Muscular Atrophy models. Hum Mol Genet 19(20):4059–4071PubMedCrossRefGoogle Scholar
  67. 67.
    Passini MA, Cheng SH (2011) Prospects for the gene therapy of spinal muscular atrophy. Trends Mol Med 17(5):259–265PubMedCrossRefGoogle Scholar
  68. 68.
    Bish LT, Sleeper MM, Brainard B et al (2008) Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther 16(12):1953–1959PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Pacak CA, Mah CS, Thattaliyath BD et al (2006) Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 99(4):e3–e9PubMedCrossRefGoogle Scholar
  70. 70.
    Wang DB, Dayton RD, Henning PP et al (2010) Expansive gene transfer in the rat CNS rapidly produces amyotrophic lateral sclerosis relevant sequelae when TDP-43 is overexpressed. Mol Ther 18(12):2064–2074PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Gray SJ, Matagne V, Bachaboina L et al (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 19(6):1058–1069PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Bevan AK, Duque S, Foust KD et al (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 19(11):1971–1980PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Wishart TM, Mutsaers CA, Riessland M et al (2014) Dysregulation of ubiquitin homeostasis and beta-catenin signaling promote spinal muscular atrophy. J Clin Invest 124(4):1821–1834PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Schreml J, Riessland M, Paterno M et al (2012) Severe SMA mice show organ impairment that cannot be rescued by therapy with the HDACi JNJ-26481585. Eur J Hum Genet 21(6):643–652PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Shababi M, Habibi J, Ma L et al (2012) Partial restoration of cardio-vascular defects in a rescued severe model of spinal muscular atrophy. J Mol Cell Cardiol 52(5):1074–1082PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Araujo Ade Q, Araujo M, Swoboda KJ (2009) Vascular perfusion abnormalities in infants with spinal muscular atrophy. J Pediatr 155(2):292–294CrossRefGoogle Scholar
  77. 77.
    Rudnik-Schöneborn S, Vogelgesang S, Armbrust S et al (2010) Digital necroses and vascular thrombosis in severe spinal muscular atrophy. Muscle Nerve 42(1):144–147PubMedCrossRefGoogle Scholar
  78. 78.
    Benkhelifa-Ziyyat S, Besse A, Roda M et al (2013) Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther 21(2):282–290PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Lorson MA, Spate LD, Samuel MS et al (2011) Disruption of the Survival Motor Neuron (SMN) gene in pigs using ssDNA. Transgenic Res 20(6):1293–1304PubMedCrossRefGoogle Scholar
  80. 80.
    Baughan TD, Dickson A, Osman EY et al (2009) Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy. Hum Mol Genet 18(9):1600–1611PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Coady TH, Lorson CL (2010) Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy. J Neurosci 30(1):126–130PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Shababi M, Glascock J, Lorson CL (2011) Combination of SMN trans-splicing and a neurotrophic factor increases the life span and body mass in a severe model of spinal muscular atrophy. Hum Gene Ther 22(2):135–144PubMedCrossRefGoogle Scholar
  83. 83.
    Shababi M, Lorson CL (2012) Optimization of SMN trans-splicing through the analysis of SMN introns. J Mol Neurosci 46(3):459–469PubMedCrossRefGoogle Scholar
  84. 84.
    Baughan T, Shababi M, Coady TH et al (2006) Stimulating full-length SMN2 expression by delivering bifunctional RNAs via a viral vector. Mol Ther 14(1):54–62PubMedCrossRefGoogle Scholar
  85. 85.
    Coady TH, Shababi M, Tullis GE et al (2007) Restoration of SMN function: delivery of a trans-splicing RNA re-directs SMN2 pre-mRNA splicing. Mol Ther 15(8):1471–1478PubMedCrossRefGoogle Scholar
  86. 86.
    Coady TH, Baughan TD, Shababi M et al (2008) Development of a single vector system that enhances trans-splicing of SMN2 transcripts. PLoS One 3(10):e3468PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Hua Y, Vickers TA, Baker BF et al (2007) Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 5(4):e73PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Gottschall PE, Komaki G, Arimura A (1992) Increased circulating interleukin-1 and interleukin-6 after intracerebroventricular injection of lipopolysaccharide. Neuroendocrinology 56(6):935–938PubMedCrossRefGoogle Scholar
  89. 89.
    Veerendra Kumar MH, Gupta YK (2002) Intracerebroventricular administration of colchicine produces cognitive impairment associated with oxidative stress in rats. Pharmacol Biochem Behav 73(3):565–571PubMedCrossRefGoogle Scholar
  90. 90.
    Zhang SJ, Deng YM, Zhu YL et al (2010) Intracerebroventricular injection of leukotriene B4 attenuates antigen-induced asthmatic response via BLT1 receptor stimulating HPA-axis in sensitized rats. Respir Res 11:39PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Shultz SR, MacFabe DF, Ossenkopp KP et al (2008) Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology 54(6):901–911PubMedCrossRefGoogle Scholar
  92. 92.
    Shultz SR, Macfabe DF, Martin S et al (2009) Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: further development of a rodent model of autism. Behav Brain Res 200(1):33–41PubMedCrossRefGoogle Scholar
  93. 93.
    Rodriguez Diaz M, Abdala P, Barroso-Chinea P et al (2001) Motor behavioural changes after intracerebroventricular injection of 6-hydroxydopamine in the rat: an animal model of Parkinson's disease. Behav Brain Res 122(1):79–92PubMedCrossRefGoogle Scholar
  94. 94.
    Ally A, Hand GA, Mitchell JH (1996) Cardiovascular responses to static exercise in conscious cats: effects of intracerebroventricular injection of clonidine. J Physiol 491(2):519–527PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Neuhuber B, Barshinger AL, Paul C et al (2008) Stem cell delivery by lumbar puncture as a therapeutic alternative to direct injection into injured spinal cord. J Neurosurg Spine 9(4):390–399PubMedCrossRefGoogle Scholar
  96. 96.
    Glascock JJ, Osman EY, Coady TH et al (2011) Delivery of therapeutic agents through intracerebroventricular (ICV) and intravenous (IV) injection in mice. J Vis Exp (56), pii: 2968Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Monir Shababi
    • 1
    Email author
  • Erkan Y. Osman
    • 2
  • Christian L. Lorson
    • 1
    • 2
  1. 1.Department of Veterinary PathobiologyUniversity of MissouriColumbiaUSA
  2. 2.Department of Molecular Microbiology and ImmunologySchool of MedicineColumbiaUSA

Personalised recommendations