Skip to main content

AAV Gene Therapy Strategies for Lysosomal Storage Disorders with Central Nervous System Involvement

  • Protocol
  • First Online:
Gene Delivery and Therapy for Neurological Disorders

Abstract

Gene therapy is one of the most promising approaches for the treatment of lysosomal storage disorders (LSDs). This is especially true for the 75 % of LSDs that have central nervous system (CNS) involvement, where enzyme replacement therapy (ERT), the standard of care for LSDs, is ineffective in treating the neurological features of these diseases. Recombinant adeno-associated virus (AAV) vectors have emerged as the most efficient and promising gene transfer vehicles for the CNS and in particular for LSDs. Direct infusion of AAV vectors into interconnected structures in the brain has achieved widespread distribution of vector and therapeutic levels of lysosomal enzymes throughout the CNS. Early stages of clinical trials are currently underway for treating neurological disorders with AAV vectors, with much anticipation for moving these treatments forward to aid patients and families affected by these terrible diseases. In this chapter, we will detail the protocols used for stereotaxic AAV infusion into the brain of mice, cats, sheep, and nonhuman primates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arfi A, Richard M, Scherman D (2012) Innovative therapeutic approaches for improving patient life condition with a neurological lysosomal disease. In: Tan Ü (ed) Latest findings in intellectual and developmental disabilities research. Croatia, InTech

    Google Scholar 

  2. Suzuki K (2003) Globoid cell leukodystrophy (Krabbe’s disease): update. J Child Neurol 18:595–603

    PubMed  Google Scholar 

  3. Sano R et al (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell 36:500–511

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Fuller M, Meikle PJ, Hopwood JJ (2006) Epidemiology of lysosomal storage diseases: an overview. In: Mehta A, Beck M, Sunder-Plassmann G (eds) Perspectives from 5 Years of FOS. Oxford PharmaGenesis, Oxford

    Google Scholar 

  5. Mahuran DJ (1999) Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta 1455:105–138

    CAS  PubMed  Google Scholar 

  6. Carstea ED et al (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231

    CAS  PubMed  Google Scholar 

  7. Meikle PJ et al (1999) Prevalence of lysosomal storage disorders. JAMA 281:249–254

    CAS  PubMed  Google Scholar 

  8. Byrne BJ et al (2011) Pompe disease gene therapy. Hum Mol Genet 20:R61–R68

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Desnick RJ, Schuchman EH (2012) Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu Rev Genomics Hum Genet 13:307–335

    CAS  PubMed  Google Scholar 

  10. Johnson WG et al (1973) Intravenous injection of purified hexosaminidase A into a patient with Tay-Sachs disease. Birth Defects Orig Artic Ser 9:120–124

    CAS  PubMed  Google Scholar 

  11. Enns GM, Huhn SL (2008) Central nervous system therapy for lysosomal storage disorders. Neurosurg Focus 24:E12

    PubMed  Google Scholar 

  12. Dickson P et al (2007) Intrathecal enzyme replacement therapy: successful treatment of brain disease via the cerebrospinal fluid. Mol Genet Metab 91:61–68

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Lee WC et al (2007) Single-dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. FASEB J 21:2520–2527

    CAS  PubMed  Google Scholar 

  14. Chang M et al (2008) Intraventricular enzyme replacement improves disease phenotypes in a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther 16:649–656

    CAS  PubMed  Google Scholar 

  15. Hemsley KM et al (2008) Effect of high dose, repeated intra-CSF injection of sulphamidase on neuropathology in MPS IIIA mice. Genes Brain Behav 7:740–753

    CAS  Google Scholar 

  16. Dodge JC et al (2009) Intracerebroventricular infusion of acid sphingomyelinase corrects CNS manifestations in a mouse model of Niemann-Pick A disease. Exp Neurol 215:349–357

    CAS  PubMed  Google Scholar 

  17. Hemsley KM et al (2009) Effect of cisternal sulfamidase delivery in MPS IIIA Huntaway dogs: a proof of principle study. Mol Genet Metab 98:383–392

    CAS  PubMed  Google Scholar 

  18. Cabrera-Salazar MA et al (2010) Intracerebroventricular delivery of glucocerebrosidase reduces substrates and increases lifespan in a mouse model of neuronopathic Gaucher disease. Exp Neurol 225:436–444

    CAS  PubMed  Google Scholar 

  19. Ziegler RJ et al (2011) Distribution of acid sphingomyelinase in rodent and non-human primate brain after intracerebroventricular infusion. Exp Neurol 231:261–271

    CAS  PubMed  Google Scholar 

  20. Auclair D et al (2012) Intrathecal recombinant human 4-sulfatase reduces accumulation of glycosaminoglycans in dura of mucopolysaccharidosis VI cats. Pediatr Res 71:39–45

    CAS  PubMed  Google Scholar 

  21. Spencer BJ, Verma IM (2007) Targeted delivery of proteins across the blood–brain barrier. Proc Natl Acad Sci 104:7594–7599

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Osborn MJ et al (2008) Targeting of the CNS in MPS-IH using a nonviral transferrin-alpha-L-iduronidase fusion gene product. Mol Ther 16:1459–1466

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Papademetriou J et al (2012) Comparative binding, endocytosis, and biodistribution of antibodies and antibody-coated carriers for targeted delivery of lysosomal enzymes to ICAM-1 versus transferrin receptor. J Inherit Metab Dis 36:467–477

    PubMed Central  PubMed  Google Scholar 

  24. Boado RJ et al (2008) Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human blood–brain barrier. Biotechnol Bioeng 99:475–484

    CAS  PubMed  Google Scholar 

  25. Grubb JH et al (2008) Infused Fc-tagged beta-glucuronidase crosses the placenta and produces clearance of storage in utero in mucopolysaccharidosis VII mice. Proc Natl Acad Sci 105:8375–8380

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Böckenhoff A et al (2014) Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A.J Neurosci 34:3122–3129

    PubMed  Google Scholar 

  27. Meng Y et al (2014) Effective intravenous therapy for neurodegenerative disease with a therapeutic enzyme and a Peptide that mediates delivery to the brain. Mol Ther 22:547–553

    CAS  PubMed  Google Scholar 

  28. Biffi A et al (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:6148

    Google Scholar 

  29. Ioannou YA, Bishop DF, Desnick RJ (1992) Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol 119:1137–1150

    CAS  PubMed  Google Scholar 

  30. Neufeld EF (2006) Enzyme replacement therapy: a brief history. In: Mehta A, Beck M, Sunder-Plassmann G (eds) Perspectives from 5 years of FOS. Oxford PharmaGenesis, Oxford

    Google Scholar 

  31. Sands MS, Davidson BL (2006) Gene therapy for lysosomal storage diseases. Mol Ther 13:839–849

    CAS  PubMed  Google Scholar 

  32. Taylor RM, Wolfe JH (1997) Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of beta-glucuronidase. Nat Med 3:771–774

    CAS  PubMed  Google Scholar 

  33. Passini MA et al (2002) Distribution of a lysosomal enzyme in the adult brain by axonal transport and by cells of the rostral migratory stream. J Neurosci 22:6437–6446

    CAS  PubMed  Google Scholar 

  34. Luca T et al (2005) Axons mediate the distribution of arylsulfatase A within the mouse hippocampus upon gene delivery. Mol Ther 12:669–679

    CAS  PubMed  Google Scholar 

  35. Hennig AK et al (2003) Intravitreal gene therapy reduces lysosomal storage in specific areas of the CNS in mucopolysaccharidosis VII mice. J Neurosci 23:3302–3307

    CAS  PubMed  Google Scholar 

  36. Broekman MLD et al (2009) Mechanisms of distribution of mouse beta-galactosidase in the adult GM1-gangliosidosis brain. Gene Ther 16:303–308

    CAS  PubMed  Google Scholar 

  37. Hennig AK et al (2004) AAV-mediated intravitreal gene therapy reduces lysosomal storage in the retinal pigmented epithelium and improves retinal function in adult MPS VII mice. Mol Ther 10:106–116

    CAS  PubMed  Google Scholar 

  38. Griffey M et al (2005) AAV2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol Ther 12:413–421

    CAS  PubMed  Google Scholar 

  39. Liu G et al (2005) Functional correction of CNS phenotypes in a lysosomal storage disease model using adeno-associated virus type 4 vectors. J Neurosci 25:9321–9327

    CAS  PubMed  Google Scholar 

  40. Cearley CN, Wolfe JH (2007) A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 27:9928–9940

    CAS  PubMed  Google Scholar 

  41. Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13:528–537

    CAS  PubMed  Google Scholar 

  42. Salegio EA et al (2013) Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther 20:348–352

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Bosch A et al (2000) Long-term and significant correction of brain lesions in adult mucopolysaccharidosis type VII mice using recombinant AAV vectors. Mol Ther 1:63–70

    CAS  PubMed  Google Scholar 

  44. Skorupa AF et al (1999) Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp Neurol 160:17–27

    CAS  PubMed  Google Scholar 

  45. Cachon-Gonzalez MB et al (2006) Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci 103:10373–10378

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Dodge JC et al (2005) Gene transfer of human acid sphingomyelinase corrects neuropathology and motor deficits in a mouse model of Niemann-Pick type A disease. Proc Natl Acad Sci 102:17822–17827

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Baek RC et al (2006) AAV-mediated gene delivery in adult GM1-gangliosidosis mice corrects lysosomal storage in CNS and improves survival. PLoS One 5:e13468

    Google Scholar 

  48. Kells AP et al (2009) Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc Natl Acad Sci 106:2407–2411

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Liu G et al (2005) Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS. Gene Ther 12:1503–1508

    CAS  PubMed  Google Scholar 

  50. Salegio EA et al (2010) Magnetic resonance imaging-guided delivery of adeno-associated virus type 2 to the primate brain for the treatment of lysosomal storage disorders. Hum Gene Ther 21:1093–1103

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Suzuki Y, Oshima A, Nanba E (2001) b-Galactosidase deficiency(b-Galactosidosis): GM1 Gangliosidosis and Morquio B disease. In: Valle D et al (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill Companies, Inc., New York, NY

    Google Scholar 

  52. Sango K et al (1995) Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 11:170–176

    CAS  PubMed  Google Scholar 

  53. Gravel RA et al (2001) The GM2 gangliosidoses. In: Valle D et al (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill Companies, Inc., New York, NY

    Google Scholar 

  54. Afione SA, Conrad CK, Flotte TR (1995) Gene therapy vectors as drug delivery systems. Clin Pharmacokinet 28:181–189

    CAS  PubMed  Google Scholar 

  55. Ciesielska A et al (2013) Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol Ther 21:158–166

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Franco LM et al (2005) Evasion of immune responses to introduced human acid alpha-glucosidase by liver-restricted expression in glycogen storage disease type II. Mol Ther 12:876–884

    CAS  PubMed  Google Scholar 

  57. Passini MA et al (2007) Combination brain and systemic injections of AAV provide maximal functional and survival benefits in the Niemann-Pick mouse. Proc Natl Acad Sci 104:9505–9510

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Bradbury AM et al (2013) Therapeutic response in feline Sandhoff disease despite immunity to intracranial gene therapy. Mol Ther 21:1306–1315

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ciron C et al (2006) Gene therapy of the brain in the dog model of Hurler’s syndrome. Ann Neurol 60:204–213

    CAS  PubMed  Google Scholar 

  60. Colle MA et al (2010) Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Hum Mol Genet 19:147–158

    CAS  PubMed  Google Scholar 

  61. Kügler S et al (2003) Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units. Virology 311:89–95

    PubMed  Google Scholar 

  62. Lawlor PA et al (2009) Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol Ther 17:1692–1702

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Markakis EA et al (2010) Comparative transduction efficiency of AAV vector serotypes 1–6 in the substantia nigra and striatum of the primate brain. Mol Ther 18:588–593

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21:583–593

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Burger C et al (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317

    CAS  PubMed  Google Scholar 

  66. Cearley CN et al (2008) Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol Ther 16:1710–1718

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Foust KD et al (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Gray SJ et al (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 19:1058–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Klein RL et al (2006) Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins. Mol Ther 13:517–527

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Klein RL et al (2008) AAV8, 9, Rh10, Rh43 vector gene transfer in the rat brain: effects of serotype, promoter and purification method. Mol Ther 16:89–96

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Sondhi D et al (2007) Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector. Mol Ther 15:481–491

    CAS  PubMed  Google Scholar 

  72. Yang B et al (2012) Intravascular delivery of rAAVrh.8 generates widespreading transduction of neuronal and glial cell types in the adult mouse central nervous system. Molecular Therapy, Philadelphia, PA

    Google Scholar 

  73. Zhang H et al (2011) Several rAAV vectors efficiently cross the blood–brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 19:1440–1448

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Sands MS, Haskins ME (2008) CNS-directed gene therapy for lysosomal storage diseases. Acta Paediatr Suppl 97:22–27

    PubMed Central  PubMed  Google Scholar 

  75. Worgall S et al (2008) Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 19:463–474

    CAS  PubMed  Google Scholar 

  76. http://www.ncbi.nlm.nih.gov/pubmed/24524415

  77. Ellinwood NM et al (2011) Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol Ther 19:251–259

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Gray SJ et al (2013) Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 20:450–459

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Sondhi D et al (2012) Long term expression and safety of administration of AAVrh.10hCLN2 to the brain of rats and non-human primates for the treatment of late infantile neuronal lipofuscinosis. Hum Gene Ther Methods 23:324–335

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Sanftner LM et al (2005) AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters. Exp Neurol 194:476–483

    CAS  PubMed  Google Scholar 

  81. Salegio EA et al (2012) Safety study of adeno-associated virus serotype 2-mediated human acid sphingomyelinase expression in the nonhuman primate brain. Hum Gene Ther 23:891–902

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Ciron C et al (2009) Human alpha-iduronidase gene transfer mediated by adeno-associated virus types 1, 2, and 5 in the brain of nonhuman primates: vector diffusion and biodistribution. Hum Gene Ther 20:350–360

    CAS  PubMed  Google Scholar 

  83. Cachon-Gonzalez MB et al (2012) Gene transfer corrects acute GM2 gangliosidosis: potential therapeutic contribution of perivascular enzyme flow. Mol Ther 20:1489–1500

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kaplitt MG et al (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–154

    CAS  PubMed  Google Scholar 

  85. Passini MA et al (2003) Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. J Virol 77:7034–7040

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Broekman MLD et al (2006) Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or -2 serotypes for widespread gene delivery to the neonatal mouse brain. Neuroscience 138:501–510

    CAS  PubMed  Google Scholar 

  87. Meijer DH et al (2009) Controlling brain tumor growth by intraventricular administration of an AAV vector encoding IFN-beta. Cancer Gene Ther 16:664–671

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Federici T et al (2012) Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther 19:852–859

    CAS  PubMed  Google Scholar 

  89. Rafi MA et al (2005) AAV-mediated expression of galactocerebrosidase in brain results in attenuated symptoms and extended life span in murine models of globoid cell leukodystrophy. Mol Ther 11:734–744

    CAS  PubMed  Google Scholar 

  90. Broekman MLD et al (2007) Complete correction of enzymatic deficiency and neurochemistry in the GM1-gangliosidosis mouse brain by neonatal adeno-associated virus-mediated gene delivery. Mol Ther 15:30–37

    CAS  PubMed  Google Scholar 

  91. Wolf DA et al (2011) Direct gene transfer to the CNS prevents emergence of neurologic disease in a murine model of mucopolysaccharidosis type I. Neurobiol Dis 43:123–133

    CAS  PubMed  Google Scholar 

  92. Baker HJ et al (1971) Neuronal GM1 gangliosidosis in a Siamese cat with beta-galactosidase deficiency. Science 174:838–839

    CAS  PubMed  Google Scholar 

  93. Cork LC et al (1977) GM2 ganglioside lysosomal storage disease in cats with beta-hexosaminidase deficiency. Science 196:1014–1017

    CAS  PubMed  Google Scholar 

  94. Martin DR et al (2008) Molecular consequences of the pathogenic mutation in feline GM1 gangliosidosis. Mol Genet Metab 94:212–221

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Martin DR et al (2004) An inversion of 25 base pairs causes feline GM2 gangliosidosis variant. Exp Neurol 187:30–37

    CAS  PubMed  Google Scholar 

  96. Baek RC et al (2009) Comparative analysis of brain lipids in mice, cats, and humans with Sandhoff disease. Lipids 44:197–205

    CAS  PubMed Central  PubMed  Google Scholar 

  97. McCurdy VJ et al (2012) Presymptomatic gene therapy cures feline GM1 gangliosidosis. Molecular Therapy, Philadelphia, PA, USA

    Google Scholar 

  98. Johnson AK et al (2012) Dramatic phenotypic improvement in a feline model of Sandhoff disease treated by adeno-associated virus gene therapy. Molecular Therapy, Philadelphia, PA, USA

    Google Scholar 

  99. http://www.ncbi.nlm.nih.gov/pubmed/25474439

    Google Scholar 

  100. http://www.ncbi.nlm.nih.gov/pubmed/24718858

    Google Scholar 

  101. Johnson AK et al (2011) Dramatic phenotypic improvement after adeno-associated virus gene therapy in a feline model of sandhoff disease. Molecular Therapy, Seattle, WA, USA

    Google Scholar 

  102. Torres PA et al (2010) Tay-Sachs disease in Jacob sheep. Mol Genet Metab 101:357–363

    CAS  PubMed  Google Scholar 

  103. Porter BF et al (2011) Pathology of GM2 gangliosidosis in Jacob sheep. Vet Pathol 48:807–813

    CAS  PubMed  Google Scholar 

  104. Whitlock BK et al (2010) Interaction of kisspeptin and the somatotropic axis. Neuroendocrinology 92:178–188

    CAS  PubMed  Google Scholar 

  105. Bankiewicz KS et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14

    CAS  PubMed  Google Scholar 

  106. Fiandaca MS et al (2008) Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics 5:123–127

    PubMed Central  PubMed  Google Scholar 

  107. Kaplitt MG et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105

    CAS  PubMed  Google Scholar 

  108. Eberling JL et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70:1980–1983

    CAS  PubMed  Google Scholar 

  109. Bobo RH et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci 91:2076–2080

    CAS  PubMed Central  PubMed  Google Scholar 

  110. van der Bom IMJ et al (2013) Frameless multimodal image guidance of localized convection-enhanced delivery of therapeutics in the brain. J Neurointerv Surg 5:69–72

    PubMed Central  PubMed  Google Scholar 

  111. Yin D et al (2010) Cannula placement for effective convection-enhanced delivery in the nonhuman primate thalamus and brainstem: implications for clinical delivery of therapeutics. J Neurosurg 113:240–248

    PubMed  Google Scholar 

  112. White E et al (2011) A robust MRI-compatible system to facilitate highly accurate stereotactic administration of therapeutic agents to targets within the brain of a large animal model. J Neurosci Methods 195:78–87

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Krauze MT et al (2005) Real-time visualization and characterization of liposomal delivery into the monkey brain by magnetic resonance imaging. Brain Res Protoc 16:20–26

    CAS  Google Scholar 

  114. Subramanian T et al (2005) MRI guidance improves accuracy of stereotaxic targeting for cell transplantation in parkinsonian monkeys. Exp Neurol 193:172–180

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Sena-Esteves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Golebiowski, D. et al. (2015). AAV Gene Therapy Strategies for Lysosomal Storage Disorders with Central Nervous System Involvement. In: Bo, X., Verhaagen, J. (eds) Gene Delivery and Therapy for Neurological Disorders. Neuromethods, vol 98. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2306-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2306-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2305-2

  • Online ISBN: 978-1-4939-2306-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics