Skip to main content

One FISH, dFISH, Three FISH: Sensitive Methods of Whole-Mount Fluorescent In Situ Hybridization in Freshwater Planarians

  • Protocol
  • First Online:
In Situ Hybridization Methods

Part of the book series: Neuromethods ((NM,volume 99))

Abstract

As freshwater planarians (flatworms) are further developed as a model system, the most valuable tool continues to be in situ hybridization (ISH) analysis of gene expression in whole mount adult animals (WISH). Multiple hurdles have been overcome during the optimization of a standard protocol for colorimetric, single color detections. However, gene function studies on planarians have evolved to the point where virtually all investigations require the analysis of multiple RNAs, simultaneously. Thus, considerable effort by the entire planarian community has been put forth to create adequate methodologies towards this goal. Here we summarize the field, methodological evolution, and describe a new method for more rapid and more sensitive detection of multiple RNAs by multi-fluorescent ISH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spradling A, Penman S, Pardue ML (1975) Analysis of drosophila mRNA by in situ hybridization: sequences transcribed in normal and heat shocked cultured cells. Cell 4:395–404

    Article  CAS  PubMed  Google Scholar 

  2. Manning JE, Hershey ND, Broker TR, Pellegrini M, Mitchell HK et al (1975) A new method of in situ hybridization. Chromosoma 53:107–117

    Article  CAS  PubMed  Google Scholar 

  3. Lepesant JA, Levine M, Garen A, Lepesant-Kejzlarvoa J, Rat L et al (1982) Developmentally regulated gene expression in Drosophila larval fat bodies. J Mol Appl Genet 1:371–383

    CAS  PubMed  Google Scholar 

  4. Varmus HE, Stavnezer J, Medeiros E, Bishop JM (1975) Detection and characterization of RNA tumor virus-specific DNA in cells. Bibl Haematol 40:451–461. Pubmed: (http://www.ncbi.nlm.nih.gov/pubmed/51630) pmid = 51630

  5. Hafen E, Levine M, Garber RL, Gehring WJ (1983) An improved in situ hybridization method for the detection of cellular RNAs in Drosophila tissue sections and its application for localizing transcripts of the homeotic Antennapedia gene complex. EMBO J 2:617–623

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Levine M, Hafen E, Garber RL, Gehring WJ (1983) Spatial distribution of Antennapedia transcripts during Drosophila development. EMBO J 2:2037–2046

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85

    Article  CAS  PubMed  Google Scholar 

  8. Hauptmann G, Gerster T (1994) Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos. Trends Genet 10:266

    Article  CAS  PubMed  Google Scholar 

  9. Hauptmann G, Gerster T (2000) Multicolor whole-mount in situ hybridization. Methods Mol Biol 137:139–148

    CAS  PubMed  Google Scholar 

  10. Bauman JG, Bayer JA, van Dekken H (1990) Fluorescent in-situ hybridization to detect cellular RNA by flow cytometry and confocal microscopy. J Microsc 157:73–81

    Article  CAS  PubMed  Google Scholar 

  11. Arnold N, Seibl R, Kessler C, Wienberg J (1992) Nonradioactive in situ hybridization with digoxigenin labeled DNA probes. Biotech Histochem 67:59–67

    Article  CAS  PubMed  Google Scholar 

  12. van Gijlswijk RP, Wiegant J, Vervenne R, Lasan R, Tanke HJ et al (1996) Horseradish peroxidase-labeled oligonucleotides and fluorescent tyramides for rapid detection of chromosome-specific repeat sequences. Cytogenet Cell Genet 75:258–262

    Article  PubMed  Google Scholar 

  13. Clay H, Ramakrishnan L (2005) Multiplex fluorescent in situ hybridization in zebrafish embryos using tyramide signal amplification. Zebrafish 2:105–111

    Article  CAS  PubMed  Google Scholar 

  14. Bobrow MN, Moen PT Jr. (2001) Tyramide signal amplification (TSA) systems for the enhancement of ISH signals in cytogenetics. Curr Protoc Cytom Chapter 8: Unit 8.9

    Google Scholar 

  15. van Gijlswijk RP, Zijlmans HJ, Wiegant J, Bobrow MN, Erickson TJ et al (1997) Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J Histochem Cytochem 45:375–382

    Article  PubMed  Google Scholar 

  16. van Gijlswijk RP, Wiegant J, Raap AK, Tanke HJ (1996) Improved localization of fluorescent tyramides for fluorescence in situ hybridization using dextran sulfate and polyvinyl alcohol. J Histochem Cytochem 44:389–392

    Article  PubMed  Google Scholar 

  17. de Haas RR, Verwoerd NP, van der Corput MP, van Gijlswijk RP, Siitari H et al (1996) The use of peroxidase-mediated deposition of biotin-tyramide in combination with time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. J Histochem Cytochem 44:1091–1099

    Article  PubMed  Google Scholar 

  18. Hopman AH, Ramaekers FC, Speel EJ (1998) Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for In situ hybridization using CARD amplification. J Histochem Cytochem 46:771–777

    Article  CAS  PubMed  Google Scholar 

  19. Scimone ML, Srivastava M, Bell GW, Reddien PW (2011) A regulatory program for excretory system regeneration in planarians. Development 138:4387–4398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Newmark PA, Sánchez Alvarado A (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219

    Article  CAS  PubMed  Google Scholar 

  21. Reddien PW, Sanchez Alvarado A (2004) Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20:725–757

    Article  CAS  PubMed  Google Scholar 

  22. Sánchez Alvarado A (2004) Planarians. Curr Biol 14:R737–R738

    Article  PubMed  Google Scholar 

  23. Sanchez Alvarado A (2007) Stem cells and the Planarian Schmidtea mediterranea. C R Biol 330:498–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sánchez Alvarado A (2003) The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration. Curr Opin Genet Dev 13:438–444

    Article  PubMed  Google Scholar 

  25. Sanchez Alvarado A, Kang H (2005) Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea. Exp Cell Res 306:299–308

    Article  CAS  PubMed  Google Scholar 

  26. Newmark PA, Reddien PW, Cebria F, Sanchez Alvarado A (2003) Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc Natl Acad Sci U S A 100(Suppl 1):11861–11865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pearson BJ, Eisenhoffer GT, Gurley KA, Rink JC, Miller DE et al (2009) Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev Dyn 238:443–450

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hyman LH (1951) The invertebrates vol 2: platyhelminthes and rhynchocoela the acoelomate bilateria. [S.l.]. McGraw-Hill, New York

    Google Scholar 

  29. King RS, Newmark PA (2013) In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Dev Biol 13:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Garcia-Fernandez J, Baguna J, Salo E (1993) Genomic organization and expression of the planarian homeobox genes Dth-1 and Dth-2. Development 118:241–253

    CAS  PubMed  Google Scholar 

  31. Agata K, Soejima Y, Kato K, Kobayashi C, Umesono Y et al (1998) Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zoolog Sci 15:433–440

    Article  CAS  PubMed  Google Scholar 

  32. Angerer LM, Angerer RC (1981) Detection of poly A + RNA in sea urchin eggs and embryos by quantitative in situ hybridization. Nucleic Acids Res 9:2819–2840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Guo T, Peters AH, Newmark PA (2006) A bruno-like Gene Is Required for Stem Cell Maintenance in Planarians. Dev Cell 11:159–169

    Article  CAS  PubMed  Google Scholar 

  34. Eisenhoffer GT, Kang H, Sanchez Alvarado A (2008) Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3:327–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lauter G, Soll I, Hauptmann G (2011) Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC Dev Biol 11:43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Guedelhoefer OC 4th, Sanchez Alvarado A (2012) Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development 139:3510–3520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the entire Pearson lab for continuing troubleshooting and improvements on this method. DDRB was funded by the Canadian Institute for Health Research (CIHR) Frederick Banting and Charles Best Canada Graduate Scholarship #201101GSD-277528. BJP was funded by Ontario Institute for Cancer Research (OICR) award #IA-026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bret J. Pearson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brown, D.D.R., Pearson, B.J. (2015). One FISH, dFISH, Three FISH: Sensitive Methods of Whole-Mount Fluorescent In Situ Hybridization in Freshwater Planarians. In: Hauptmann, G. (eds) In Situ Hybridization Methods. Neuromethods, vol 99. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2303-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2303-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2302-1

  • Online ISBN: 978-1-4939-2303-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics