Skip to main content

High-Throughput In Situ Hybridization: Systematical Production of Gene Expression Data and Beyond

  • Protocol
  • First Online:
In Situ Hybridization Methods

Part of the book series: Neuromethods ((NM,volume 99))

  • 1641 Accesses

Abstract

A plethora of modern-day techniques allows the detailed characterization of the transcriptome on a quantitative level. Analyses, based on techniques such as cDNA microarrays or RNA-seq (whole transcriptome shotgun sequencing), are usually genome wide in scope and readily detect small changes in gene expression levels across different biological samples. However, when it comes to spatial localization of gene expression within the context of complex tissues, traditional methods of in situ hybridization remain unparalleled with regard to their cellular resolution.

Here we review methods that extend classical in situ hybridization protocols and techniques to the special needs of high-throughput (HT) studies and which can be readily scaled up to a genomic level to cover organs or even whole organisms in great detail. Moreover, we discuss suitable HT instrumentation and address postproduction issues typically arising with HT pipelines such as annotation of expression data and database organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Metadata include sample identity, riboprobe identity, probe sequence, information on particular protocols used, laboratory staff names, dates of the various procedures carried out, and textual annotation of gene expression patterns.

  2. 2.

    The copper base has an engraved cross hair that can be aligned to an orthogonal grid attached to one of the eye pieces of a dissecting microscope. This alignment is performed prior to adding OCT and specimen. Before removing the chamber, mark its position with flat corner iron brace fastened to the microscope base. Once filled with OCT and specimen, place the chamber back into its original position onto the microscope base and use the grid of the microscope for specimen orientation. Since the sidewalls of the chamber are translucent, the orientation in remaining planes can readily be achieved by visual inspection. A blunt preparation needle should be used to manipulate the specimen.

  3. 3.

    Basic Tm calculation: Tmcalc = 64.9 °C + 41 °C × (number of Gs and Cs in the primer − 16.4)/length of primer. However, a precise optimum annealing temperature must be determined empirically.

Abbreviations

BLAST:

Basic local alignment search tool

BLAT:

BLAST-like alignment tool

ISH:

In situ hybridization

NR:

Nonradioactive

RNA:

Ribonucleic acids

LNA:

Locked nucleic acids

ROI:

Region of interest

h:

Hours

min:

Minutes

s:

Seconds

RT:

Room temperature

IT:

Information technology

XAMPP:

Apache distribution containing MySQL, PHP, and Perl

CNS:

Central nervous system

E:

Embryonic day

P:

Postnatal day

DIG:

Digoxigenin

NBT:

Nitro blue tetrazolium

BCIP:

5-Bromo-4-chloro-3-indolyl-phosphate

FA:

Formaldehyde

IAA:

Iodoacetamide

References

  1. Pardue M-L (2007) Following the chromosome path to the garden of the genome. Annu Rev Cell Dev Biol 23:1–22. doi:10.1146/annurev.cellbio.23.090506.123459

    Article  CAS  PubMed  Google Scholar 

  2. Eichele G, Diez-Roux G (2011) High-throughput analysis of gene expression on tissue sections by in situ hybridization. Methods 53:417–423. doi:10.1016/j.ymeth.2010.12.020

    Article  CAS  PubMed  Google Scholar 

  3. Cremer CM, Cremer M, Escobar JL et al (2009) Fast, quantitative in situ hybridization of rare mRNAs using 14C-standards and phosphorus imaging. J Neurosci Methods 185:56–61. doi:10.1016/j.jneumeth.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  4. Geffers L, Herrmann B, Eichele G (2012) Web-based digital gene expression atlases for the mouse. Mamm Genome 23:525–538. doi:10.1007/s00335-012-9413-3

    Article  CAS  PubMed  Google Scholar 

  5. Lein ES, Hawrylycz MJ, Ao N et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176. doi:10.1038/nature05453

    Article  CAS  PubMed  Google Scholar 

  6. Diez-Roux G, Banfi S, Sultan M et al (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9:e1000582. doi:10.1371/journal.pbio.1000582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Visel A, Thaller C, Eichele G (2004) GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res 32:D552–D556. doi:10.1093/nar/gkh029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Speel EJ (1999) Robert Feulgen Prize Lecture 1999. Detection and amplification systems for sensitive, multiple-target DNA and RNA in situ hybridization: looking inside cells with a spectrum of colors. Histochem Cell Biol 112:89–113

    Article  CAS  PubMed  Google Scholar 

  9. Speel EJM, Komminoth P (1999) CARD in situ hybridization: sights and signals. Endocr Pathol 10:193–198

    Article  CAS  PubMed  Google Scholar 

  10. Yaylaoglu MB, Titmus A, Visel A et al (2005) Comprehensive expression atlas of fibroblast growth factors and their receptors generated by a novel robotic in situ hybridization platform. Dev Dyn 234:371–386. doi:10.1002/dvdy.20441

    Article  CAS  PubMed  Google Scholar 

  11. Carson JP, Thaller C, Eichele G (2002) A transcriptome atlas of the mouse brain at cellular resolution. Curr Opin Neurobiol 12:562–565

    Article  CAS  PubMed  Google Scholar 

  12. Geffers L, Tetzlaff B, Cui X et al (2013) METscout: a pathfinder exploring the landscape of metabolites, enzymes and transporters. Nucleic Acids Res 41:D1047–D1054. doi:10.1093/nar/gks886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kiflemariam S, Andersson S, Asplund A et al (2012) Scalable in situ hybridization on tissue arrays for validation of novel cancer and tissue-specific biomarkers. PLoS One 7:e32927. doi:10.1371/journal.pone.0032927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nilsson S, Möller C, Jirström K et al (2012) Downregulation of miR-92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration. PLoS One 7:e36051. doi:10.1371/journal.pone.0036051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ng L, Pathak SD, Kuan C et al (2007) Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain. IEEE/ACM Trans Comput Biol Bioinform 4:382–393. doi:10.1109/tcbb.2007.1035

    Article  CAS  PubMed  Google Scholar 

  16. Carson JP, Ju T, Lu H-C et al (2005) A digital atlas to characterize the mouse brain transcriptome. PLoS Comput Biol 1:e41. doi:10.1371/journal.pcbi.0010041

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mohr S, Bakal C, Perrimon N (2010) Genomic screening with RNAi: results and challenges. Annu Rev Biochem 79:37–64. doi:10.1146/annurev-biochem-060408-092949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Niehrs C, Pollet N (1999) Synexpression groups in eukaryotes. Nature 402:483–487. doi:10.1038/990025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christina Thaller, Dirk Reuter, Benjamin Tetzlaff, and Dr. Murat Yaylaoglu for their assistance in the preparation of this manuscript. We acknowledge the support of the Max Planck Society (L.G. and G.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Eichele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Geffers, L., Eichele, G. (2015). High-Throughput In Situ Hybridization: Systematical Production of Gene Expression Data and Beyond. In: Hauptmann, G. (eds) In Situ Hybridization Methods. Neuromethods, vol 99. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2303-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2303-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2302-1

  • Online ISBN: 978-1-4939-2303-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics