Skip to main content

Current Methods in Mouse Models of Pancreatic Cancer

  • Protocol
  • First Online:
Mouse Models of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1267))

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the Western world. The disease has the worst prognosis in the gastrointestinal malignancies with an overall 5-year survival rate of less than 5 %. Therefore, in the search for novel therapeutic targets, biomarkers for early detection and particularly adequate methods to develop and validate therapeutic strategies for this disease are still in urgent demand. Although significant progress has been achieved in understanding the genetic and molecular mechanisms, most approaches have not yet translated sufficiently for better outcome of the patients. In part, this situation is due to inappropriate or insufficient methods in modeling PDAC in laboratory settings. In the past several years, there has been an explosion of genetically engineered mouse models (GEMM) and patient-derived xenografts (PDX) that recapitulate both genetic and morphological alterations that lead to the development of PDAC. Both models are increasingly used for characterization and validation of diagnostic and therapeutic strategies. In this chapter we will discuss state-of-the-art models to consider when selecting an appropriate in vivo system to study disease etiology, cell signaling, and drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sipos B, Moser S, Kalthoff H, Torok V, Lohr M, Kloppel G (2003) A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 442(5):444–452. doi:10.1007/s00428-003-0784-4

    PubMed  Google Scholar 

  2. Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, Gress T, Bassi C, Kloppel G, Kalthoff H, Ungefroren H, Lohr M, Scarpa A (2001) Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 439(6):798–802

    Article  CAS  PubMed  Google Scholar 

  3. Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, Shi C, Danenberg K, Danenberg PV, Kuramochi H, Tanaka K, Singh S, Salimi-Moosavi H, Bouraoud N, Amador ML, Altiok S, Kulesza P, Yeo C, Messersmith W, Eshleman J, Hruban RH, Maitra A, Hidalgo M (2006) An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res 12(15):4652–4661. doi:10.1158/1078-0432.CCR-06-0113

    Article  CAS  PubMed  Google Scholar 

  4. Gingell R, Wallcave L, Nagel D, Kupper R, Pour P (1976) Metabolism of the pancreatic carcinogens N-nitroso-bis(2-oxopropyl)amine and N-nitroso-bis(2-hydroxypropyl)amine in the Syrian hamster. J Natl Cancer Inst 57(5):1175–1178

    CAS  PubMed  Google Scholar 

  5. Longnecker DS, Curphey TJ (1975) Adenocarcinoma of the pancreas in azaserine-treated rats. Cancer Res 35(8):2249–2258

    CAS  PubMed  Google Scholar 

  6. Osvaldt AB, Wendt LR, Bersch VP, Backes AN, de Cassia ASR, Edelweiss MI, Rohde L (2006) Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice. Surgery 140(5):803–809. doi:10.1016/j.surg.2006.02.012

    Article  PubMed  Google Scholar 

  7. Seidler B, Schmidt A, Mayr U, Nakhai H, Schmid RM, Schneider G, Saur D (2008) A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proc Natl Acad Sci U S A 105(29):10137–10142. doi:10.1073/pnas.0800487105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lewis BC, Klimstra DS, Varmus HE (2003) The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes Dev 17(24):3127–3138. doi:10.1101/gad.1140403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17(4):343–359

    Article  CAS  PubMed  Google Scholar 

  10. Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9(11):4227–4239

    PubMed  Google Scholar 

  11. Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype C, Neumann H, Safran H, Humblet Y, Perez Ruixo J, Ma Y, Von Hoff D (2004) Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 22(8):1430–1438. doi:10.1200/JCO.2004.10.112

    Article  PubMed  Google Scholar 

  12. Garber K (2009) From human to mouse and back: ‘tumorgraft’ models surge in popularity. J Natl Cancer Inst 101(1):6–8. doi:10.1093/jnci/djn481

    Article  PubMed  Google Scholar 

  13. Rubio-Viqueira B, Hidalgo M (2009) Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther 85(2):217–221. doi:10.1038/clpt.2008.200

    Article  CAS  PubMed  Google Scholar 

  14. Siolas D, Hannon GJ (2013) Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 73(17):5315–5319. doi:10.1158/0008-5472.CAN-13-1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S, Mercer KL, Grochow R, Hock H, Crowley D, Hingorani SR, Zaks T, King C, Jacobetz MA, Wang L, Bronson RT, Orkin SH, DePinho RA, Jacks T (2004) Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5(4):375–387

    Article  CAS  PubMed  Google Scholar 

  16. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6):437–450

    Article  CAS  PubMed  Google Scholar 

  17. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7(5):469–483. doi:10.1016/j.ccr.2005.04.023

    Article  CAS  PubMed  Google Scholar 

  18. Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129(10):2447–2457

    CAS  PubMed  Google Scholar 

  19. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134. doi:10.1038/ng959

    Article  CAS  PubMed  Google Scholar 

  20. Mazur PK, Gruner BM, Nakhai H, Sipos B, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT (2010) Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras(G12D)-induced skin carcinogenesis in vivo. PLoS One 5(10):e13578. doi:10.1371/journal.pone.0013578

    Article  PubMed Central  PubMed  Google Scholar 

  21. Obata J, Yano M, Mimura H, Goto T, Nakayama R, Mibu Y, Oka C, Kawaichi M (2001) p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes Cells 6(4):345–360

    Article  CAS  PubMed  Google Scholar 

  22. Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Kloppel G, Longnecker DS, Luttges J, Offerhaus GJ (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25(5):579–586

    Article  CAS  PubMed  Google Scholar 

  23. Brockie E, Anand A, Albores-Saavedra J (1998) Progression of atypical ductal hyperplasia/carcinoma in situ of the pancreas to invasive adenocarcinoma. Ann Diagn Pathol 2(5):286–292

    Article  CAS  PubMed  Google Scholar 

  24. Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, Kern SE, Hruban RH (2000) Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 60(7):2002–2006

    CAS  PubMed  Google Scholar 

  25. Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, Deng CX, Hruban RH, Adsay NV, Tuveson DA, Hingorani SR (2007) Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11(3):229–243. doi:10.1016/j.ccr.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  26. Mazur PK, Einwachter H, Lee M, Sipos B, Nakhai H, Rad R, Zimber-Strobl U, Strobl LJ, Radtke F, Kloppel G, Schmid RM, Siveke JT (2010) Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 107(30):13438–13443. doi:10.1073/pnas.1002423107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Adsay NV (2002) Intraductal papillary mucinous neoplasms of the pancreas: pathology and molecular genetics. J Gastrointest Surg 6(5):656–659

    Article  PubMed  Google Scholar 

  28. Siveke JT, Einwachter H, Sipos B, Lubeseder-Martellato C, Kloppel G, Schmid RM (2007) Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 12(3):266–279. doi:10.1016/j.ccr.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  29. Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, Feng B, Brennan C, Weissleder R, Mahmood U, Hanahan D, Redston MS, Chin L, Depinho RA (2006) Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A 103(15):5947–5952. doi:10.1073/pnas.0601273103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, Canamero M, Rodriguez-Justo M, Serrano M, Barbacid M (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19(6):728–739. doi:10.1016/j.ccr.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  31. Chu GC, Kimmelman AC, Hezel AF, DePinho RA (2007) Stromal biology of pancreatic cancer. J Cell Biochem 101(4):887–907. doi:10.1002/jcb.21209

    Article  CAS  PubMed  Google Scholar 

  32. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, Torigian DA, O’Dwyer PJ, Vonderheide RH (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616. doi:10.1126/science.1198443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 67(19):9518–9527. doi:10.1158/0008-5472.CAN-07-0175

    Article  CAS  PubMed  Google Scholar 

  34. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78. doi:10.1038/nrc1256

    Article  CAS  PubMed  Google Scholar 

  35. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15(24):3243–3248. doi:10.1101/gad.943001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A (2000) Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14(8):994–1004

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119(6):847–860. doi:10.1016/j.cell.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  38. Nakhai H, Sel S, Favor J, Mendoza-Torres L, Paulsen F, Duncker GI, Schmid RM (2007) Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134(6):1151–1160. doi:10.1242/dev.02781

    Article  CAS  PubMed  Google Scholar 

  39. Gannon M, Herrera PL, Wright CV (2000) Mosaic Cre-mediated recombination in pancreas using the pdx-1 enhancer/promoter. Genesis 26(2):143–144

    Article  CAS  PubMed  Google Scholar 

  40. Desai BM, Oliver-Krasinski J, De Leon DD, Farzad C, Hong N, Leach SD, Stoffers DA (2007) Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest 117(4):971–977. doi:10.1172/JCI29988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71. doi:10.1038/5007

    Article  CAS  PubMed  Google Scholar 

  42. Partecke IL, Kaeding A, Sendler M, Albers N, Kuhn JP, Speerforck S, Roese S, Seubert F, Diedrich S, Kuehn S, Weiss UF, Mayerle J, Lerch MM, Hadlich S, Hosten N, Heidecke CD, Puls R, von Bernstorff W (2011) In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer 11:40. doi:10.1186/1471-2407-11-40

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chai MG, Kim-Fuchs C, Angst E, Sloan EK (2013) Bioluminescent orthotopic model of pancreatic cancer progression. J Vis Exp. 2013 Jun 28;(76). doi:10.3791/50395

  44. Jensen JN, Cameron E, Garay MV, Starkey TW, Gianani R, Jensen J (2005) Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128(3):728–741

    Article  CAS  PubMed  Google Scholar 

  45. Morris JP, Cano DA, Sekine S, Wang SC, Hebrok M (2010) Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest 120(2):508–520. doi:10.1172/JCI40045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ardito CM, Gruner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur PK, Delgiorno KE, Carpenter ES, Halbrook CJ, Hall JC, Pal D, Briel T, Herner A, Trajkovic-Arsic M, Sipos B, Liou GY, Storz P, Murray NR, Threadgill DW, Sibilia M, Washington MK, Wilson CL, Schmid RM, Raines EW, Crawford HC, Siveke JT (2012) EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 22(3):304–317. doi:10.1016/j.ccr.2012.07.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Gannon M, Gamer LW, Wright CV (2001) Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev Biol 238(1):185–201. doi:10.1006/dbio.2001.0359

    Article  CAS  PubMed  Google Scholar 

  48. Gray MJ, Wey JS, Belcheva A, McCarty MF, Trevino JG, Evans DB, Ellis LM, Gallick GE (2005) Neuropilin-1 suppresses tumorigenic properties in a human pancreatic adenocarcinoma cell line lacking neuropilin-1 coreceptors. Cancer Res 65(9):3664–3670. doi:10.1158/0008-5472.CAN-04-2229

    Article  CAS  PubMed  Google Scholar 

  49. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182. doi:10.1182/blood-2001-12-0207

    Article  CAS  PubMed  Google Scholar 

  50. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598. doi:10.1038/nature07567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE (2009) Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc 4(11):1670–1680. doi:10.1038/nprot.2009.171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2(2):247–250. doi:10.1038/nprot.2007.25

    Article  CAS  PubMed  Google Scholar 

  53. Ding Y, Cravero JD, Adrian K, Grippo P (2010) Modeling pancreatic cancer in vivo: from xenograft and carcinogen-induced systems to genetically engineered mice. Pancreas 39(3):283–292. doi:10.1097/MPA.0b013e3181c15619

    Article  PubMed  Google Scholar 

  54. Qiu W, Su GH (2013) Development of orthotopic pancreatic tumor mouse models. Methods Mol Biol 980:215–223. doi:10.1007/978-1-62703-287-2_11

    Article  PubMed Central  PubMed  Google Scholar 

  55. Bruns CJ, Harbison MT, Kuniyasu H, Eue I, Fidler IJ (1999) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1(1):50–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S (2004) Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 29(3):193–203

    Article  CAS  PubMed  Google Scholar 

  57. McNally LR, Welch DR, Beck BH, Stafford LJ, Long JW, Sellers JC, Huang ZQ, Grizzle WE, Stockard CR, Nash KT, Buchsbaum DJ (2010) KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clin Exp Metastasis 27(8):591–600. doi:10.1007/s10585-010-9349-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zheng B, Vogel H, Donehower LA, Bradley A (2002) Visual genotyping of a coat color tagged p53 mutant mouse line. Cancer Biol Ther 1(4):433–435, doi:06040290 [pii]

    Article  CAS  PubMed  Google Scholar 

  59. Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA (2006) Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 20(22):3130–3146. doi:10.1101/gad.1478706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR, Grizzle WE, Klug CA (2007) Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 67(17):8121–8130. doi:10.1158/0008-5472.CAN-06-4167

    Article  CAS  PubMed  Google Scholar 

  61. Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20(22):3147–3160. doi:10.1101/gad.1475506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Skoulidis F, Cassidy LD, Pisupati V, Jonasson JG, Bjarnason H, Eyfjord JE, Karreth FA, Lim M, Barber LM, Clatworthy SA, Davies SE, Olive KP, Tuveson DA, Venkitaraman AR (2010) Germline Brca2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell 18(5):499–509. doi:10.1016/j.ccr.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  63. Saborowski M, Saborowski A, Morris JP, Bosbach B, Dow LE, Pelletier J, Klimstra DS, Lowe SW (2014) A modular and flexible ESC-based mouse model of pancreatic cancer. Genes Dev 28(1):85–97. doi:10.1101/gad.232082.113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. von Figura G, Fukuda A, Roy N, Liku ME, Morris Iv JP, Kim GE, Russ HA, Firpo MA, Mulvihill SJ, Dawson DW, Ferrer J, Mueller WF, Busch A, Hertel KJ, Hebrok M (2014) The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat Cell Biol 16(3):255–267. doi:10.1038/ncb2916. PubMed PMID: 24561622. Epub 2014 Feb 23

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens T. Siveke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mazur, P.K., Herner, A., Neff, F., Siveke, J.T. (2015). Current Methods in Mouse Models of Pancreatic Cancer. In: Eferl, R., Casanova, E. (eds) Mouse Models of Cancer. Methods in Molecular Biology, vol 1267. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2297-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2297-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2296-3

  • Online ISBN: 978-1-4939-2297-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics