Skip to main content

Lung Adenocarcinomas: Comparison Between Mice and Men

  • Protocol
  • First Online:
Mouse Models of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1267))

Abstract

A few human tumor types have been modeled in mice using genetic or chemical tools. The final goal of these efforts is to establish models that mimic not only the location and cellular origin of human cancers but also their genetic aberrations and morphologic appearances. The latter has been neglected by most investigators, and comparative histopathology of human versus mouse cancers is not readily available. This issue is exacerbated by the fact that some human malignancies comprise a whole spectrum of cancer subtypes that differ molecularly and morphologically. Lung cancer is a paradigm that appears not only as non-small cell and small-cell lung cancer but comprises a plethora of subtypes with distinct morphologic features. This review discusses species-specific and common morphological features of non-small cell lung cancer in mice and humans. Potential inconsistencies and the need for refined genetic tools are discussed in the context of a comparative analysis between commonly employed RAS-induced mouse tumors and human lung cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oomen LC, Van der Valk MA, Den Engelse L (1983) Tumour susceptibility in mice in relation to H-2 haplotype. IARC Sci Publ 51:205–221

    PubMed  Google Scholar 

  2. Schepers GW (1971) Lung tumors of primates and rodents. II. IMS Ind Med Surg 40(2):23–31

    CAS  PubMed  Google Scholar 

  3. Miller MS, Gressani KM, Leone-Kabler S, Townsend AJ, Malkinson AM, O'Sullivan MG (2000) Differential sensitivity to lung tumorigenesis following transplacental exposure of mice to polycyclic hydrocarbons, heterocyclic amines, and lung tumor promoters. Exp Lung Res 26(8):709–730

    Article  CAS  PubMed  Google Scholar 

  4. Yang G, Wang ZY, Kim S, Liao J, Seril DN, Chen X, Smith TJ, Yang CS (1997) Characterization of early pulmonary hyperproliferation and tumor progression and their inhibition by black tea in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model with A/J mice. Cancer Res 57(10):1889–1894

    CAS  PubMed  Google Scholar 

  5. Malkinson AM (1992) Primary lung tumors in mice: an experimentally manipulable model of human adenocarcinoma. Cancer Res 52(9 Suppl):2670–2676

    Google Scholar 

  6. Stearman RS, Dwyer-Nield L, Zerbe L, Blaine SA, Chan Z, Bunn PA Jr, Johnson GL, Hirsch FR, Merrick DT, Franklin WA, Baron AE, Keith RL, Nemenoff RA, Malkinson AM, Geraci MW (2005) Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol 167(6):1763–1775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R (2003) Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 278(19):17036–17043. doi:10.1074/jbc.M210429200

    Article  CAS  PubMed  Google Scholar 

  8. Heinrich U, Pott F, Mohr U, Fuhst R, Konig J (1986) Lung tumours in rats and mice after inhalation of PAH-rich emissions. Exp Pathol 29(1):29–34

    Article  CAS  PubMed  Google Scholar 

  9. Grimmer G, Abel U, Brune H, Deutsch-Wenzel R, Emura M, Heinrich U, Jacob J, Kemena A, Misfeld J, Mohr U et al (1986) Evaluation of environmental carcinogens by carcinogen-specific test systems. Exp Pathol 29(2):65–76

    Article  CAS  PubMed  Google Scholar 

  10. Lee HY, Suh YA, Lee JI, Hassan KA, Mao L, Force T, Gilbert BE, Jacks T, Kurie JM (2002) Inhibition of oncogenic K-ras signaling by aerosolized gene delivery in a mouse model of human lung cancer. Clin Cancer Res 8(9):2970–2975

    CAS  PubMed  Google Scholar 

  11. Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M, Jacks T (2005) The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 65(22):10280–10288. doi:10.1158/0008-5472.can-05-2193

    Article  CAS  PubMed  Google Scholar 

  12. Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C, Mesirov J, Golub TR, Jacks T (2005) An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 37(1):48–55. doi:10.1038/ng1490

    CAS  PubMed  Google Scholar 

  13. Wootton SK, Metzger MJ, Hudkins KL, Alpers CE, York D, DeMartini JC, Miller AD (2006) Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus (JSRV) closely resembles lung cancer in sheep infected with JSRV. Retrovirology 3:94

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lee GH (2008) The Kras2 oncogene and mouse lung carcinogenesis. Med Mol Morphol 41(4):199–203. doi:10.1007/s00795-008-0419-6

    Article  CAS  PubMed  Google Scholar 

  15. Kim CF, Jackson EL, Kirsch DG, Grimm J, Shaw AT, Lane K, Kissil J, Olive KP, Sweet-Cordero A, Weissleder R, Jacks T (2005) Mouse models of human non-small-cell lung cancer: raising the bar. Cold Spring Harb Symp Quant Biol 70:241–250. doi:10.1101/sqb.2005.70.037

    Article  CAS  PubMed  Google Scholar 

  16. Minna JD, Kurie JM, Jacks T (2003) A big step in the study of small cell lung cancer. Cancer Cell 4(3):163–166

    Article  CAS  PubMed  Google Scholar 

  17. DuPage M, Dooley AL, Jacks T (2009) Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4(7):1064–1072. doi:10.1038/nprot.2009.95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhou Y, Rideout WM 3rd, Zi T, Bressel A, Reddypalli S, Rancourt R, Woo JK, Horner JW, Chin L, Chiu MI, Bosenberg M, Jacks T, Clark SC, Depinho RA, Robinson MO, Heyer J (2010) Chimeric mouse tumor models reveal differences in pathway activation between ERBB family- and KRAS-dependent lung adenocarcinomas. Nat Biotechnol 28(1):71–78. doi:10.1038/nbt.1595

    Article  CAS  PubMed  Google Scholar 

  19. Musteanu M, Blaas L, Zenz R, Svinka J, Hoffmann T, Grabner B, Schramek D, Kantner HP, Muller M, Kolbe T, Rulicke T, Moriggl R, Kenner L, Stoiber D, Penninger JM, Popper H, Casanova E, Eferl R (2012) A mouse model to identify cooperating signaling pathways in cancer. Nat Methods 9(9):897−+. doi:10.1038/Nmeth.2130

    Google Scholar 

  20. McFadden DG, Papagiannakopoulos T, Taylor-Weiner A, Stewart C, Carter SL, Cibulskis K, Bhutkar A, McKenna A, Dooley A, Vernon A, Sougnez C, Malstrom S, Heimann M, Park J, Chen F, Farago AF, Dayton T, Shefler E, Gabriel S, Getz G, Jacks T (2014) Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156(6):1298–1311. doi:10.1016/j.cell.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  21. Banerjee ER, Henderson WR Jr (2012) Characterization of lung stem cell niches in a mouse model of bleomycin-induced fibrosis. Stem Cell Res Ther 3(3):21. doi:10.1186/scrt112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Koukourakis MI, Giatromanolaki A, Brekken RA, Sivridis E, Gatter KC, Harris AL, Sage EH (2003) Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients. Cancer Res 63(17):5376–5380

    CAS  PubMed  Google Scholar 

  23. O’Byrne KJ, Dalgleish AG, Browning MJ, Steward WP, Harris AL (2000) The relationship between angiogenesis and the immune response in carcinogenesis and the progression of malignant disease. Eur J Cancer 36(2):151–169

    Article  PubMed  Google Scholar 

  24. Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, Mekid H, Mir LM, Opolon P, Corvol P, Monnot C, Germain S (2006) Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci U S A 103(49):18721–18726. doi:10.1073/pnas.0609025103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Liu YL, Yu JM, Song XR, Wang XW, Xing LG, Gao BB (2006) Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol Ther 5(10):1320–1326

    Article  CAS  PubMed  Google Scholar 

  26. Taki M, Kamata N, Yokoyama K, Fujimoto R, Tsutsumi S, Nagayama M (2003) Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci 94(7):593–597

    Article  CAS  PubMed  Google Scholar 

  27. Eger A, Stockinger A, Park J, Langkopf E, Mikula M, Gotzmann J, Mikulits W, Beug H, Foisner R (2004) beta-Catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 23(15):2672–2680

    Article  CAS  PubMed  Google Scholar 

  28. Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H, Mikulits W (2004) Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat Res 566(1):9–20

    Article  CAS  PubMed  Google Scholar 

  29. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18(1):99–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lan M, Kojima T, Osanai M, Chiba H, Sawada N (2004) Oncogenic Raf-1 regulates epithelial to mesenchymal transition via distinct signal transduction pathways in an immortalized mouse hepatic cell line. Carcinogenesis 25:2385–2395

    Article  CAS  PubMed  Google Scholar 

  31. Grego-Bessa J, Diez J, Timmerman L, de la Pompa JL (2004) Notch and epithelial-mesenchyme transition in development and tumor progression: another turn of the screw. Cell Cycle 3(6):718–721

    Article  CAS  PubMed  Google Scholar 

  32. Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP (2004) Integration of TGF-beta/smad and Jagged1/notch signalling in epithelial-to-mesenchymal transition. EMBO J 23(5):1155–1165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yao HW, Xie QM, Chen JQ, Deng YM, Tang HF (2004) TGF-beta1 induces alveolar epithelial to mesenchymal transition in vitro. Life Sci 76(1):29–37

    Article  CAS  PubMed  Google Scholar 

  34. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6(10):931–940

    Article  CAS  PubMed  Google Scholar 

  35. Blaukovitsch M, Halbwedl I, Kothmaier H, Gogg-Kammerer M, Popper HH (2006) Sarcomatoid carcinomas of the lung–are these histogenetically heterogeneous tumors? Virchows Arch 449(4):455–461

    Article  CAS  PubMed  Google Scholar 

  36. Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, Thilaganathan N, Du L, Zhang Y, Pertsemlidis A, Kurie JM (2009) Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 23(18):2140–2151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ramos C, Becerril C, Montano M, Garcia-De-Alba C, Ramirez R, Checa M, Pardo A, Selman M (2010) FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway. Am J Physiol Lung Cell Mol Physiol 299(2):L222–L231. doi:10.1152/ajplung.00070.2010

    Article  CAS  PubMed  Google Scholar 

  38. Masszi A, Kapus A (2011) Smaddening complexity: the role of Smad3 in epithelial-myofibroblast transition. Cells Tissues Organs 193(1–2):41–52. doi:000320180 [pii] 10.1159/000320180 [doi]

    Google Scholar 

  39. Pallier K, Cessot A, Cote JF, Just PA, Cazes A, Fabre E, Danel C, Riquet M, Devouassoux-Shisheboran M, Ansieau S, Puisieux A, Laurent-Puig P, Blons H (2012) TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma. PLoS One 7(1):e29954. doi:10.1371/journal.pone.0029954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Borczuk AC, Kim HK, Yegen HA, Friedman RA, Powell CA (2005) Lung adenocarcinoma global profiling identifies type II transforming growth factor-beta receptor as a repressor of invasiveness. Am J Respir Crit Care Med 172(6):729–737

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gibbons DL, Lin W, Creighton CJ, Zheng S, Berel D, Yang Y, Raso MG, Liu DD, Wistuba II, Lozano G, Kurie JM (2009) Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma. PLoS One 4(4):e5401

    Article  PubMed Central  PubMed  Google Scholar 

  42. Matsuzaki O (1975) Histogenesis and growing patterns of lung tumors induced by potassium 1-methyl-1,4-dihydro-7-(2-(5-nitrofuryl)vinyl)-4-oxo-1,8-naphthyridine-3-carboxylate in ICR mice. Gann 66(3):259–267

    CAS  PubMed  Google Scholar 

  43. Rehm S, Kelloff GJ (1991) Histologic characterization of mouse bronchiolar cell hyperplasia, metaplasia, and neoplasia induced intratracheally by 3-methylcholanthrene. Exp Lung Res 17(2):229–244

    Article  CAS  PubMed  Google Scholar 

  44. Malkinson AM (1998) Molecular comparison of human and mouse pulmonary adenocarcinomas. Exp Lung Res 24(4):541–555. doi:10.3109/01902149809087385

    Article  CAS  PubMed  Google Scholar 

  45. Nikitin AY, Alcaraz A, Anver MR, Bronson RT, Cardiff RD, Dixon D, Fraire AE, Gabrielson EW, Gunning WT, Haines DC, Kaufman MH, Linnoila RI, Maronpot RR, Rabson AS, Reddick RL, Rehm S, Rozengurt N, Schuller HM, Shmidt EN, Travis WD, Ward JM, Jacks T (2004) Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium. Cancer Res 64(7):2307–2316

    Article  CAS  PubMed  Google Scholar 

  46. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE, Garg K, Austin JH, Asamura H, Rusch VW, Hirsch FR, Scagliotti G, Mitsudomi T, Huber RM, Ishikawa Y, Jett J, Sanchez-Cespedes M, Sculier JP, Takahashi T, Tsuboi M, Vansteenkiste J, Wistuba I, Yang PC, Aberle D, Brambilla C, Flieder D, Franklin W, Gazdar A, Gould M, Hasleton P, Henderson D, Johnson B, Johnson D, Kerr K, Kuriyama K, Lee JS, Miller VA, Petersen I, Roggli V, Rosell R, Saijo N, Thunnissen E, Tsao M, Yankelewitz D (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6(2):244–285. doi:10.1097/JTO.0b013e318206a221 [doi] 01243894-201102000-00004 [pii]

  47. Maeshima A, Miyagi A, Hirai T, Nakajima T (1997) Mucin-producing adenocarcinoma of the lung, with special reference to goblet cell type adenocarcinoma: immunohistochemical observation and Ki-ras gene mutation. Pathol Int 47(7):454–460

    Article  CAS  PubMed  Google Scholar 

  48. Dabbagh K, Takeyama K, Lee HM, Ueki IF, Lausier JA, Nadel JA (1999) IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J Immunol 162(10):6233–6237

    CAS  PubMed  Google Scholar 

  49. Yamamoto H, Bai YQ, Yuasa Y (2003) Homeodomain protein CDX2 regulates goblet-specific MUC2 gene expression. Biochem Biophys Res Commun 300(4):813–818

    Article  CAS  PubMed  Google Scholar 

  50. Stacher E, Ullmann R, Halbwedl I, Gogg-Kammerer M, Boccon-Gibod L, Nicholson AG, Sheppard MN, Carvalho L, Franca MT, Macsweeney F, Morresi-Hauf A, Popper HH (2004) Atypical goblet cell hyperplasia in congenital cystic adenomatoid malformation as a possible preneoplasia for pulmonary adenocarcinoma in childhood: a genetic analysis. Hum Pathol 35(5):565–570

    Article  CAS  PubMed  Google Scholar 

  51. Maeda Y, Tsuchiya T, Hao H, Tompkins DH, Xu Y, Mucenski ML, Du L, Keiser AR, Fukazawa T, Naomoto Y, Nagayasu T, Whitsett JA (2012) Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung. J Clin Invest 122(12):4388–4400. doi:10.1172/jci64048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Popper HH, Woldrich A (1991) Oxygen radical formation a probable mechanism for chromate toxicity. Prog Histochem Cytochem 23(1–4):220–226

    Article  CAS  PubMed  Google Scholar 

  53. Popper HH, Wiespainer G, Leingartner E, Weybora W, Ratschek M (1992) Short term chromate inhalation in a Computer-assisted inhalation chamber: immediate toxicity and late cancer development. Environ Hyg 3:127–131

    Google Scholar 

  54. Reid L, Meyrick B, Antony VB, Chang LY, Crapo JD, Reynolds HY (2005) The mysterious pulmonary brush cell: a cell in search of a function. Am J Respir Crit Care Med 172(1):136–139. doi:10.1164/rccm.200502-203WS

    Article  PubMed Central  PubMed  Google Scholar 

  55. Sbarbati A, Osculati F (2005) A new fate for old cells: brush cells and related elements. J Anat 206(4):349–358. doi:10.1111/j.1469-7580.2005.00403.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Takeyama K, Dabbagh K, Lee HM, Agusti C, Lausier JA, Ueki IF, Grattan KM, Nadel JA (1999) Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci U S A 96(6):3081–3086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Rose MC, Piazza FM, Chen YA, Alimam MZ, Bautista MV, Letwin N, Rajput B (2000) Model systems for investigating mucin gene expression in airway diseases. J Aerosol Med 13(3):245–261

    Article  CAS  PubMed  Google Scholar 

  58. Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Langer CJ, DeVore RF 3rd, Gaudreault J, Damico LA, Holmgren E, Kabbinavar F (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22(11):2184–2191. doi:10.1200/jco.2004.11.022

    Article  CAS  PubMed  Google Scholar 

  59. Zuhdi Alimam M, Piazza FM, Selby DM, Letwin N, Huang L, Rose MC (2000) Muc-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am J Respir Cell Mol Biol 22(3):253–260

    Article  CAS  PubMed  Google Scholar 

  60. Yamauchi K, Piao HM, Nakadate T, Shikanai T, Nakamura Y, Ito H, Mouri T, Kobayashi H, Maesawa C, Sawai T, Ohtsu H, Inoue H (2009) Enhanced goblet cell hyperplasia in HDC knockout mice with allergic airway inflammation. Allergol Int 58(1):125–134. doi:10.2332/allergolint.O-08-547

    Article  CAS  PubMed  Google Scholar 

  61. Zhang X, Zhang Y, Tao B, Wang D, Cheng H, Wang K, Zhou R, Xie Q, Ke Y (2012) Docking protein Gab2 regulates mucin expression and goblet cell hyperplasia through TYK2/STAT6 pathway. FASEB J 26(11):4603–4613. doi:10.1096/fj.12-211755

    Article  CAS  PubMed  Google Scholar 

  62. Abdullah LH, Wolber C, Kesimer M, Sheehan JK, Davis CW (2012) Studying mucin secretion from human bronchial epithelial cell primary culturesMethods in molecular biology (Clifton. Methods Mol BIol 842:259–277. doi:10.1007/978-1-61779-513-8_16

    Article  CAS  PubMed  Google Scholar 

  63. Linnoila RI, Sahu A, Miki M, Ball DW, DeMayo FJ (2000) Morphometric analysis of CC10-hASH1 transgenic mouse lung: a model for bronchiolization of alveoli and neuroendocrine carcinoma. Exp Lung Res 26(8):595–615

    Article  CAS  PubMed  Google Scholar 

  64. Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161(1):173–182. doi:10.1016/s0002-9440(10)64169-7

    Article  PubMed Central  PubMed  Google Scholar 

  65. Berns A (2005) Stem cells for lung cancer? Cell 121(6):811–813

    Article  CAS  PubMed  Google Scholar 

  66. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835

    Article  CAS  PubMed  Google Scholar 

  67. Volckaert T, Dill E, Campbell A, Tiozzo C, Majka S, Bellusci S, De Langhe SP (2011) Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest 121(11):4409–4419. doi:10.1172/jci58097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Van Winkle LS, Buckpitt AR, Nishio SJ, Isaac JM, Plopper CG (1995) Cellular response in naphthalene-induced Clara cell injury and bronchiolar epithelial repair in mice. Am J Physiol 269(6 Pt 1):L800–L818

    PubMed  Google Scholar 

  69. Buckpitt A, Boland B, Isbell M, Morin D, Shultz M, Baldwin R, Chan K, Karlsson A, Lin C, Taff A, West J, Fanucchi M, Van Winkle L, Plopper C (2002) Naphthalene-induced respiratory tract toxicity: metabolic mechanisms of toxicity. Drug Metab Rev 34(4):791–820

    Article  CAS  PubMed  Google Scholar 

  70. Abdo KM, Grumbein S, Chou BJ, Herbert R (2001) Toxicity and carcinogenicity study in F344 rats following 2 years of whole-body exposure to naphthalene vapors. Inhal Toxicol 13(10):931–950. doi:10.1080/089583701752378179

    Article  CAS  PubMed  Google Scholar 

  71. Park KS, Wells JM, Zorn AM, Wert SE, Laubach VE, Fernandez LG, Whitsett JA (2006) Transdifferentiation of ciliated cells during repair of the respiratory epithelium. Am J Respir Cell Mol Biol 34(2):151–157. doi:10.1165/rcmb.2005-0332OC

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Dr. Loupal (University of Veterinary Medicine, Dept. Pathology, Vienna, Austria) for providing diseased lung tissues from different animal species for the study of lung architecture as well as variations of diseases in animal lungs compared to human lungs. I am also grateful to Josef Penninger for enabling the studies on KRAS-induced mouse adenocarcinomas and to Rao Shuan, Sara Soto, and Beatrice Grabner for sharing their slides with me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut H. Popper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Popper, H.H. (2015). Lung Adenocarcinomas: Comparison Between Mice and Men. In: Eferl, R., Casanova, E. (eds) Mouse Models of Cancer. Methods in Molecular Biology, vol 1267. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2297-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2297-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2296-3

  • Online ISBN: 978-1-4939-2297-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics