Skip to main content

Tumor Angiogenesis: Methods to Analyze Tumor Vasculature and Vessel Normalization in Mouse Models of Cancer

  • Protocol
  • First Online:
Mouse Models of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1267))

Abstract

Angiogenesis, the formation of neo-vessels, is one of the most important hallmarks of cancer. Tumor vasculature presents structural abnormalities such as dilatation of vessel diameter and hyper-branched and twisted pattern. A promising strategy in anticancer therapy to overcome the resistance to certain antiangiogenic therapies is the tumor blood vessel normalization, which restores the physiological perfusion and oxygenation of tumor vasculature.

Many studies showed how vessel normalization is able to counteract metastasis formation and to favor chemotherapeutic drugs delivery to tumors. Herein we describe different techniques and protocols that allow the study, in vivo the main features of tumor vessel normalization such as the reduction of vessel branching and diameter, the increase of pericyte coverage, the reduction of vessel permeability, and the improvement of vessel perfusion and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCouter J, Lin R, Frantz G, Zhang Z, Hillan K, Ferrara N (2003) Mouse endocrine gland-derived vascular endothelial growth factor: a distinct expression pattern from its human ortholog suggests different roles as a regulator of organ-specific angiogenesis. Endocrinology 144(6):2606–2616. doi:10.1210/en.2002-0146

    Article  CAS  PubMed  Google Scholar 

  2. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580. doi:10.1124/pr.56.4.3

    Article  CAS  PubMed  Google Scholar 

  3. Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86(3):286–292

    Article  CAS  PubMed  Google Scholar 

  4. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478. doi:10.1038/nrm2183

    Article  CAS  PubMed  Google Scholar 

  5. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998

    Article  CAS  PubMed  Google Scholar 

  6. Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22(5):617–625. doi:10.1016/j.ceb.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  7. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989. doi:10.1038/nm0901-987, nm0901-987 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121. doi:10.1152/physrev.00038.2010, 91/3/1071 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. De Bock K, Cauwenberghs S, Carmeliet P (2011) Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 21(1):73–79. doi:10.1016/j.gde.2010.10.008

    Article  PubMed  Google Scholar 

  10. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18. doi:10.1053/sonc.2002.37263S0093775402503353 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  13. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.1038/nature10144, nature10144 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231. doi:10.1016/j.ccr.2009.01.027, S1535-6108(09)00034-8 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239. doi:10.1016/j.ccr.2009.01.021, S1535-6108(09)00029-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Maione F, Capano S, Regano D, Zentilin L, Giacca M, Casanovas O, Bussolino F, Serini G, Giraudo E (2012) Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. J Clin Invest. doi:58976. [pii]. 10.1172/JCI58976

    Google Scholar 

  17. Sennino B, McDonald DM (2012) Controlling escape from angiogenesis inhibitors. Nat Rev Cancer 12(10):699–709. doi:10.1038/nrc3366, nrc3366 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A 93(25):14765–14770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    Article  CAS  PubMed  Google Scholar 

  20. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027. doi:10.1200/JCO.2005.06.081

    Article  CAS  PubMed  Google Scholar 

  21. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  CAS  PubMed  Google Scholar 

  22. Maione F, Molla F, Meda C, Latini R, Zentilin L, Giacca M, Seano G, Serini G, Bussolino F, Giraudo E (2009) Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models. J Clin Invest 119(11):3356–3372. doi:10.1172/JCI36308, 36308 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Casazza A, Kigel B, Maione F, Capparuccia L, Kessler O, Giraudo E, Mazzone M, Neufeld G, Tamagnone L (2012) Tumour growth inhibition and anti-metastatic activity of a mutated furin-resistant Semaphorin 3E isoform. EMBO Mol Med 4(3):234–250. doi:10.1002/emmm.201100205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zacchigna S, Pattarini L, Zentilin L, Moimas S, Carrer A, Sinigaglia M, Arsic N, Tafuro S, Sinagra G, Giacca M (2008) Bone marrow cells recruited through the neuropilin-1 receptor promote arterial formation at the sites of adult neoangiogenesis in mice. J Clin Invest 118(6):2062–2075. doi:10.1172/JCI32832

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Carrer A, Moimas S, Zacchigna S, Pattarini L, Zentilin L, Ruozi G, Mano M, Sinigaglia M, Maione F, Serini G, Giraudo E, Bussolino F, Giacca M (2012) Neuropilin-1 identifies a subset of bone marrow Gr1- monocytes that can induce tumor vessel normalization and inhibit tumor growth. Cancer Res 72(24):6371–6381. doi:10.1158/0008-5472.CAN-12-0762

    Article  CAS  PubMed  Google Scholar 

  26. Falcon BL, Hashizume H, Koumoutsakos P, Chou J, Bready JV, Coxon A, Oliner JD, McDonald DM (2009) Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol 175(5):2159–2170. doi:10.2353/ajpath.2009.090391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Numata K, Luo W, Morimoto M, Kondo M, Kunishi Y, Sasaki T, Nozaki A, Tanaka K (2010) Contrast enhanced ultrasound of hepatocellular carcinoma. World J Radiol 2(2):68–82. doi:10.4329/wjr.v2.i2.68

    Article  PubMed Central  PubMed  Google Scholar 

  28. Bottos A, Martini M, Di Nicolantonio F, Comunanza V, Maione F, Minassi A, Appendino G, Bussolino F, Bardelli A (2012) Targeting oncogenic serine/threonine-protein kinase BRAF in cancer cells inhibits angiogenesis and abrogates hypoxia. Proc Natl Acad Sci U S A 109(6):E353–E359. doi:10.1073/pnas.1105026109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Associazione Italiana per la Ricerca sul Cancro (AIRC) (Investigator Grant #11600, to E.G.), Fondazione Piemontese per la Ricerca sul Cancro-Onlus (FPRC) (MIUR 5‰ E. Vaschetto, to E.G.); F. Maione was supported by “Post-doctoral Fellowships 2014” granted by Fondazione Umberto Veronesi (FUV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Maione Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Maione, F., Giraudo, E. (2015). Tumor Angiogenesis: Methods to Analyze Tumor Vasculature and Vessel Normalization in Mouse Models of Cancer. In: Eferl, R., Casanova, E. (eds) Mouse Models of Cancer. Methods in Molecular Biology, vol 1267. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2297-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2297-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2296-3

  • Online ISBN: 978-1-4939-2297-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics