Skip to main content

Modeling and Predicting RNA Three-Dimensional Structures

  • Protocol
  • First Online:
RNA Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1269))

Abstract

Modeling the three-dimensional structure of RNAs is a milestone toward better understanding and prediction of nucleic acids molecular functions. Physics-based approaches and molecular dynamics simulations are not tractable on large molecules with all-atom models. To address this issue, coarse-grained models of RNA three-dimensional structures have been developed. In this chapter, we describe a graphical modeling based on the Leontis–Westhof extended base-pair classification. This representation of RNA structures enables us to identify highly conserved structural motifs with complex nucleotide interactions in structure databases. Further, we show how to take advantage of this knowledge to quickly and simply predict three-dimensional structures of large RNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bekaert M et al (2003) Towards a computational model for -1 eukaryotic frameshifting sites. Bioinformatics 19(3):327–335

    Article  CAS  PubMed  Google Scholar 

  2. Vitreschak AG et al (2004) Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 20(1):44–50

    Article  CAS  PubMed  Google Scholar 

  3. Szewczak AA et al (1993) The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc Natl Acad Sci U S A 90(20):9581–9585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sponer J et al (2012) Chapter 6 molecular dynamics simulations of RNA molecules, in innovations in biomolecular modeling and simulations. R Soc Chem 2:129–155

    Google Scholar 

  5. Bernauer J et al (2011) Fully differentiable coarse-grained and all-atom knowledge-based potentials for RNA structure evaluation. RNA 17(6):1066–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ding F et al (2008) Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA 14(6):1164–1173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jonikas MA et al (2009) Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15(2):189–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Poursina M et al (2011) Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. Methods Enzymol 487:73–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Parisien M, Major F (2008) The MC-fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452(7183):51–55

    Article  CAS  PubMed  Google Scholar 

  10. Martinez HM, Maizel JV Jr, Shapiro BA (2008) RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Struct Dyn 25(6):669–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhao Y et al (2012) Automated and fast building of three-dimensional RNA structures. Sci Rep 2:734

    Article  PubMed Central  PubMed  Google Scholar 

  12. Das R, Baker D (2007) Automated de novo prediction of native-like RNA tertiary structures. Proc Natl Acad Sci U S A 104(37):14664–14669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7(4):291–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang Z, Xu J (2011) A conditional random fields method for RNA sequence-structure relationship modeling and conformation sampling. Bioinformatics 27(13):i102–i110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rother M et al (2011) ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 39(10):4007–4022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7(4):499–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yang H et al (2003) Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res 31(13):3450–3460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Djelloul M, Denise A (2008) Automated motif extraction and classification in RNA tertiary structures. RNA 14(12):2489–2497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Leontis N, Zirbel CL (2012) Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking. In: Leontis N, Westhof E (eds) RNA 3D structure analysis and prediction. Springer, Berlin, pp 281–298

    Chapter  Google Scholar 

  20. Hofacker IL et al (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125(2):167–188

    Article  CAS  Google Scholar 

  21. Reinharz V, Major F, Waldispuhl J (2012) Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure. Bioinformatics 28(12):i207–i214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Berman HM et al (1992) The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 63(3):751–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bernstein FC et al (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542

    Article  CAS  PubMed  Google Scholar 

  24. Fukunaga R, Yokoyama S (2007) Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea. Nat Struct Mol Biol 14(4):272–279

    Article  CAS  PubMed  Google Scholar 

  25. Lorenz R et al (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed Central  PubMed  Google Scholar 

  26. Waugh A et al (2002) RNAML: a standard syntax for exchanging RNA information. RNA 8(6):707–717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lemieux S, Major F (2002) RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire. Nucleic Acids Res 30(19):4250–4263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chojnowski G, Walen T, Bujnicki JM (2014) RNA Bricks–a database of RNA 3D motifs and their interactions. Nucleic Acids Res 42(1):D123–D131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ding Y, Chan CY, Lawrence CE (2005) RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 11(8):1157–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244(4900):48–52

    Article  CAS  PubMed  Google Scholar 

  31. Zuker M, Mathews DH, Turner DH (1999) Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide. In: Barciszewski J, Clark BFC (eds) RNA Biochemistry and Biotechnology. Springer, Netherlands, pp 11–43

    Google Scholar 

  32. Ding Y, Lawrence CE (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31(24):7280–7301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129

    Article  PubMed Central  PubMed  Google Scholar 

  34. Bellaousov S et al (2013) RNAstructure: Web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 41(Web Server issue):W471–W474

    Article  PubMed Central  PubMed  Google Scholar 

  35. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32(Web Server issue):W135–W141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Honer zu Siederdissen C et al (2011) A folding algorithm for extended RNA secondary structures. Bioinformatics 27(13):i129–i136

    Article  PubMed  Google Scholar 

  38. Do CB, Woods DA, Batzoglou S (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14):e90–e98

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Waldispühl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Waldispühl, J., Reinharz, V. (2015). Modeling and Predicting RNA Three-Dimensional Structures. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 1269. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2291-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2291-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2290-1

  • Online ISBN: 978-1-4939-2291-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics