Skip to main content

The ViennaRNA Web Services

  • Protocol
  • First Online:
RNA Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1269))

Abstract

The ViennaRNA package is a widely used collection of programs for thermodynamic RNA secondary structure prediction. Over the years, many additional tools have been developed building on the core programs of the package to also address issues related to noncoding RNA detection, RNA folding kinetics, or efficient sequence design considering RNA-RNA hybridizations. The ViennaRNA web services provide easy and user-friendly web access to these tools. This chapter describes how to use this online platform to perform tasks such as prediction of minimum free energy structures, prediction of RNA-RNA hybrids, or noncoding RNA detection. The ViennaRNA web services can be used free of charge and can be accessed via http://rna.tbi.univie.ac.at.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hofacker IL, Fontana W, Stadler P, Bonhoeffer S, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    Article  CAS  Google Scholar 

  2. Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithm Mol Biol 6:26

    Article  Google Scholar 

  3. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70–W74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066

    Article  CAS  PubMed  Google Scholar 

  6. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinform 9:474

    Article  Google Scholar 

  7. Flamm C, Hofacker IL, Stadler PF, Wolfinger MT (2002) Barrier trees of degenerate landscapes. Z Phys Chem 216:155

    Article  CAS  Google Scholar 

  8. Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL (2006) Partition function and base pairing probabilities of RNA heterodimers. Algorithm Mol Biol 1:3

    Article  Google Scholar 

  9. Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, Hofacker IL (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22:1177–1182

    Article  PubMed  Google Scholar 

  10. Eggenhofer F, Tafer H, Stadler PF, Hofacker IL (2011) RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Res 39:W149–W154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tafer H, Ameres SL, Obernosterer G, Gebeshuber CA, Schroeder R, Martinez J, Hofacker IL (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26:578–583

    Article  CAS  PubMed  Google Scholar 

  12. Washietl S, Hofacker IL (2004) Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J Mol Biol 342:19–30

    Article  CAS  PubMed  Google Scholar 

  13. Washietl S, Hofacker IL, Stadler PF (2005) Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 102:2454–2459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gruber AR, Bernhart SH, Hofacker IL, Washietl S (2008) Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinform 9:122

    Article  Google Scholar 

  15. Gruber AR, Findeiß S, Washietl S, Hofacker IL, Stadler PF (2010) RNAz 2.0: improved noncoding RNA detection. Pac Symp Biocomput 2010:69

    Google Scholar 

  16. Gruber AR, Neuböck R, Hofacker IL, Washietl S (2007) The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures. Nucleic Acids Res 35:W335–W338

    Article  PubMed Central  PubMed  Google Scholar 

  17. Yusuf D, Marz M, Stadler PF, Hofacker IL (2010) Bcheck: a wrapper tool for detecting RNase P RNA genes. BMC Genomics 11:432

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rivas E (2013) The four ingredients of single-sequence RNA secondary structure prediction: a unifying perspective. RNA Biol 10:59–70

    Article  Google Scholar 

  19. Wuchty S, Walter F, Hofacker IL, Schuster P et al (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49:145–165

    Article  CAS  PubMed  Google Scholar 

  20. Wolfinger MT, Svrcek-Seiler AW, Flamm C, Hofacker IL, Stadler PF (2004) Efficient computation of RNA folding dynamics. J Phys Math Gen 37:4731

    Article  CAS  Google Scholar 

  21. Reiche K, Stadler PF (2007) RNAstrand: reading direction of structured RNAs in multiple sequence alignments. Algorithm Mol Biol 2:6

    Article  Google Scholar 

  22. Washietl S (2010) Sequence and structure analysis of noncoding RNAs. Methods Mol Biol 609:285–306

    Article  CAS  PubMed  Google Scholar 

  23. Hofacker IL, Tafer H (2010) Designing optimal siRNA based on target site accessibility. Methods Mol Biol 623:137–154

    Article  CAS  PubMed  Google Scholar 

  24. Eggenhofer F, Hofacker IL, Höner Zu Siederdissen C (2013) CMCompare webserver: comparing RNA families via covariance models. Nucleic Acids Res 41:W499–W503

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gruber AR, Fallmann J, Kratochvill F, Kovarik P, Hofacker IL (2011) AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res 39:D66–D69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101:7287–7292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hofacker I, Lorenz R (2014) Predicting RNA structure: advances and limitations. Methods Mol Biol 1086:1

    Article  PubMed  Google Scholar 

  28. Smith C, Heyne S, Richter AS, Will S, Backofen R (2010) Freiburg RNA tools: a web server integrating INTARNA, EXPARNA and LOCARNA. Nucleic Acids Res 38:W373–W377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the University of Basel, the Austrian FWF project “SFB F43 RNA regulation of the transcriptome,” and the University of Leipzig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas R. Gruber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gruber, A.R., Bernhart, S.H., Lorenz, R. (2015). The ViennaRNA Web Services. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 1269. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2291-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2291-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2290-1

  • Online ISBN: 978-1-4939-2291-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics