Skip to main content

Induced Pluripotent Stem Cells (iPSCs) for Modeling Mitochondrial DNA Disorders

  • Protocol
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1265))

Abstract

Defects in mitochondrial DNA (mtDNA) are a frequent cause of genetic disease, with a minimum prevalence of 1 in 5,000 individuals. These disorders often present with neurological features, exhibit high clinical variability, and lack effective treatments. Viable disease models would be critical to elucidate the genotype/phenotype relationship and improve disease management. However, the peculiarities of mitochondrial genetics have hampered the generation of animal models, and current cellular models do not carry the nuclear background of the patients and do not exhibit the features of differentiated cells such as postmitotic neurons. Hence, the development of innovative modeling systems is highly needed in order to correctly address the interplay between the nuclear and mitochondrial genome within the appropriate human target cell types. The establishment of induced pluripotent stem cells (iPSCs) from patients affected by mtDNA disorders thus appears as a promising approach. Patient-derived iPSCs would contain both the original nuclear and mitochondrial DNA of the patients and would be capable of differentiating into any cell type of the body, including postmitotic neurons. Here we discuss the potential advantages and critical challenges for the application of the iPSC technology for modeling debilitating mtDNA diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304(5668):253–257

    Article  CAS  PubMed  Google Scholar 

  2. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  CAS  PubMed  Google Scholar 

  3. Wai T, Teoli D, Shoubridge EA (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40(12):1484–1488

    Article  CAS  PubMed  Google Scholar 

  4. Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, Chinnery PF, Turnbull DM (2008) Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63(1):35–39

    Article  CAS  PubMed  Google Scholar 

  5. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Schapira AH (2006) Mitochondrial disease. Lancet 368(9529):70–82

    Article  CAS  PubMed  Google Scholar 

  7. D‘Aurelio M, Vives-Bauza C, Davidson MM, Manfredi G (2010) Mitochondrial DNA background modifies the bioenergetics of NARP/MILS ATP6 mutant cells. Hum Mol Genet 19(2):374–386

    Article  PubMed Central  PubMed  Google Scholar 

  8. Tyynismaa H, Suomalainen A (2009) Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO Rep 10(2):137–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246(4929):500–503

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  11. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28(4):721–733

    Article  CAS  PubMed  Google Scholar 

  12. Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14(2):264–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CAT, Ramalho-Santos J, Van Houten B, Schatten G (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6(6):e20914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Prigione A, Lichtner B, Kuhl H, Struys EA, Wamelink M, Lehrach H, Ralser M, Timmermann B, Adjaye J (2011) Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Stem Cells 29(9):1338–1348

    CAS  PubMed  Google Scholar 

  16. Cheng L, Hansen NF, Zhao L, Du Y, Zou C, Donovan FX, Chou BK, Zhou G, Li S, Dowey SN, Ye Z, Chandrasekharappa SC, Yang H, Mullikin JC, Liu PP (2012) Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell 10(3):337–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Fujikura J, Nakao K, Sone M, Noguchi M, Mori E, Naito M, Taura D, Harada-Shiba M, Kishimoto I, Watanabe A, Asaka I, Hosoda K (2012) Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia 55(6):1689–1698

    Article  CAS  PubMed  Google Scholar 

  18. Cherry AB, Gagne KE, McLoughlin EM, Baccei A, Gorman B, Hartung O, Miller JD, Zhang J, Zon RL, Ince TA, Neufeld EJ, Lerou PH, Fleming MD, Daley GQ, Agarwal S (2013) Induced pluripotent stem cells with a pathological mitochondrial DNA deletion. Stem Cells 31(7):1287–1297

    Google Scholar 

  19. Folmes CD, Martinez-Fernandez A, Perales-Clemente E, Li X, McDonald A, Oglesbee D, Hrstka SC, Perez-Terzic C, Terzic A, Nelson TJ (2013) Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS. Stem Cells 31(7):1298–1308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hamalainen RH, Manninen T, Koivumaki H, Kislin M, Otonkoski T, Suomalainen A (2013) Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A > G mutation in human induced pluripotent stem cell-derived disease model. Proc Natl Acad Sci U S A 110(38):E3622–E3630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author declares no competing financial or commercial interests and acknowledges support from the Fritz Thyssen Foundation and the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prigione M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Prigione, A. (2015). Induced Pluripotent Stem Cells (iPSCs) for Modeling Mitochondrial DNA Disorders. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1265. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2288-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2288-8_24

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2287-1

  • Online ISBN: 978-1-4939-2288-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics