Skip to main content

Predicting Mitochondrial Targeting by Small Molecule Xenobiotics Within Living Cells Using QSAR Models

  • Protocol
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1265))

Abstract

Whether small molecule xenobiotics (biocides, drugs, probes, toxins) will target mitochondria in living cells can be predicted using an algorithm derived from QSAR modeling. Application of the algorithm requires the chemical structures of all ionic species of the xenobiotic compound in question to be defined, and for certain numerical structure parameters (AI, CBN, log P, pKa, and Z) to be obtained for all such species. How the chemical structures are specified, how the structure parameters are obtained or estimated, and how the algorithm is used are described in an explicit protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karami-Mohajeri S, Abdollahi M (2013) Mitochondrial dysfunction and organophosphorus compounds. Toxicol Appl Pharmacol 270:39–44

    Article  CAS  PubMed  Google Scholar 

  2. Kim HM, Cho BR (2013) Mitochondrial-targeted two-photon fluorescent probes for zinc ions, H2O2, and thiols in living tissue. Oxid Med Cell Longev 2013:323619

    PubMed Central  PubMed  Google Scholar 

  3. Weissig V, Boddapati SV, D’Souza GGM, Cheng SM (2004) Targeting of low-molecular weight drugs to mammalian mitochondria. Drug Des Rev 1:15–28

    CAS  Google Scholar 

  4. Stova KR, King ST, Cleary JD (2014) Cardiac toxicity of the echinocandins: chance or cause and effect association? J Clin Pharm Ther 39:1–3

    Article  Google Scholar 

  5. Chamberlain GR, Tulumello DV, Kelley SO (2013) Targeted delivery of doxorubicin to mitochondria. ASC Chem Biol 8:1389–1395

    CAS  Google Scholar 

  6. Figueira TR, Melo DR, Vercesi AE, Castilho RF (2012) Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Methods Mol Biol 810:103–117

    Article  CAS  PubMed  Google Scholar 

  7. Leung CW, Hong Y, Hanske J, Zhao E, Chen S, Pletneva EV, Tang BZ (2013) Superior fluorescent probe for detection of cardiolipin. Anal Chem 86:1263–1268

    Article  PubMed Central  PubMed  Google Scholar 

  8. Rashid F, Horobin RW (1991) Accumulation of fluorescent non-cationic probes in mitochondria of cultured cells: a proposed mechanism, and some implications. J Microsc 163:233–241

    Article  CAS  PubMed  Google Scholar 

  9. Trapp S, Horobin RW (2005) A predictive model for the selective accumulation of chemicals in tumor cells. Eur Biophys J 34:959–966

    Article  CAS  PubMed  Google Scholar 

  10. Horobin RW, Rashid-Doubell F, Pediani JD, Milligan G (2013) Predicting small molecule fluorescent probe localization in living cells using QSAR modeling. 1. Overview and models for probes of structure, properties and function in living cells. Biotech Histochem 88:440–460

    Article  CAS  PubMed  Google Scholar 

  11. Horobin RW, Trapp S, Weissig V (2007) Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release 121:125–136

    Article  CAS  PubMed  Google Scholar 

  12. O’Neil MJ (ed) (2013) Merck Index: an encyclopedia of chemicals, drugs and biologicals, 15th edn. Royal Society of Chemistry, London

    Google Scholar 

  13. Merck Index Online. Royal Society of Chemistry. www.rsc.org/merck-index. Accessed 1 Jan 2014

  14. ChemIDplus. US National Library of Medicine, Bethesda, MA. chem.sis.nim.nih.gov/chemidplus. Accessed 1 Jan 2014

    Google Scholar 

  15. ChemSpider. The Royal Society of Chemistry. www.chemspider.com. Accessed 1 Jan 2014

  16. Colour Index, 3rd edn (1971). Society of Dyers and Colourists, Bradford, and American Association of Textile Chemists and Colorists, Research Triangle Park, NC

    Google Scholar 

  17. Lillie RD (1977) H.J. Conn’s biological stains. A handbook on the nature and uses of the dyes employed in the biological laboratory, 9th edn. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  18. Horobin RW, Kiernan JA (eds) (2002) Conn’s biological stains. A handbook of dyes, stains and fluorochromes for use in biology and medicine, 10th edn. BIOS, Oxford

    Google Scholar 

  19. Colour Index International, 4th edn. Society of Dyers and Colourists and American Association of Textile and Color Chemists. Online. www.colour-index.com. Accessed 1 Jan 2014

  20. Molecular imaging and contrast agent database. www.ncbi.nlm.nih.gov/pubmed . Accessed 1 Jan 2014

  21. Senseman SA (2007) Herbicide handbook, 9th edn. Weed Science Society of America, Champaign, IL

    Google Scholar 

  22. Weed Science Society of America. Weed Science Society of America, Lawrence KS. wssa.net/weed/herbicides. Accessed 1 Jan 2014

    Google Scholar 

  23. Hernandez MA, Rathinavelu A (2006) Basic pharmacology: understanding drug action and reactions. CRC, Boca Raton, FL

    Google Scholar 

  24. DrugBank. The University of Alberta, Canada. www.drugbank.ca. Accessed 1 Jan 2014

  25. PubChem. National Center for Biotechnology Information, US National Library of Medicine, Bethesda, MA, USA. pubchem.ncbi.nim.nih.gov. Accessed 1 Jan 2014

    Google Scholar 

  26. Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena, 4th edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  27. Rossoff IS (2001) Encyclopedia of clinical toxicology. CRC, Boca Raton, FL

    Google Scholar 

  28. ToxNet. US National Library of Medicine, Bethesda, MA. toxnet.nim.nih.gov. Accessed 1 Jan 2014

    Google Scholar 

  29. Biocatalysis/Biodegradation Database. The University of Minnesota. umbbd.ethz.ch. Accessed 1 Jan 2014

    Google Scholar 

  30. Metabolism and Transport Drug Interaction Database. The University of Washington. www.druginteractioninfo.org. Accessed 1 Jan 2014

  31. Smith RM, Martell AE (1974) Critical stability constants, vol 1–6. Plenum, New York

    Google Scholar 

  32. Smith RM, Martell AE, Motekaitis RJ (2012) NIST critically selected stability constants, version 8.0, NIST standard reference database 46. US Department of Commerce, Gaithersburg, MD

    Google Scholar 

  33. Perrin DD, Dempsey B, Sarjeant EP (1981) pKa predictions for organic acids and bases. Chapman & Hall, London

    Book  Google Scholar 

  34. ACD/Labs. Advanced Chemical Development, Inc. www.acdlabs.com. Accessed 1 Jan 2014

  35. ChemSilico. Daylight Chemical Information Systems, Inc. www.chemsilico.com. Accessed 1 Jan 2014

  36. ALOGPS. Virtual Computational Chemistry Laboratory, Institute of Structural Biology, HelmholstZentrum, Munich. www.vcclab.org/lab/alogps. Accessed 1 Jan 2014

  37. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Article  CAS  Google Scholar 

  38. Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley-Interscience, New York, Chapter IV

    Google Scholar 

  39. MedChem Database. www.daylight.com/medchem.html. Accessed 1 Jan 2014

  40. Horobin RW (2010) Can QSAR models describing small-molecule xenobiotics give useful tips for predicting uptake and localization of nanoparticles in living cells? And if not, why not? In: Weissig V, D’Souza GGM (eds) Organelle-specific pharmaceutical nanotechnology. Wiley, Hoboken, NJ, pp 193–206

    Chapter  Google Scholar 

  41. Horobin RW, Rashid-Doubell F (2013) Predicting small molecule fluorescent probe localization in living cells using QSAR modeling. 2. Specifying probe, protocol an cell factors; selecting QSAR models; predicting entry and localization. Biotech Histochem 88:461–476

    Article  CAS  PubMed  Google Scholar 

  42. Stockert JC, Abasolo MI (2011) Inaccurate chemical structures of dyes and fluorochromes found in the literature can be problematic for teaching and research. Biotech Histochem 86:52–60

    Article  CAS  PubMed  Google Scholar 

  43. Avdeef A (2003) Adsorption and drug development. Solubility, permeability and charge state. Wiley-Interscience, Hoboken, NJ, Chapter 6

    Google Scholar 

  44. Mannhold R, Poda GI, Ostermann C, Tetko IV (2009) Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci 98:861–893

    Article  CAS  PubMed  Google Scholar 

  45. Franco A, Trapp S (2008) Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals. Environ Toxicol Chem 27:1995–2004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.W.H. thanks Dr. R. Aitken, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Horobin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Horobin, R.W. (2015). Predicting Mitochondrial Targeting by Small Molecule Xenobiotics Within Living Cells Using QSAR Models. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1265. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2288-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2288-8_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2287-1

  • Online ISBN: 978-1-4939-2288-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics