Skip to main content

Analysis of Pollutant-Induced Changes in Mitochondrial DNA Methylation

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1265))

Abstract

There is increasing evidence that exposure to air pollutants is associated with human disease and may act through epigenetic modification of the nuclear genome, but there have been few publications describing their impact upon the mitochondrial genome. Mitochondrial DNA may be more susceptible to pollutant-induced changes via increased oxidative stress in the cell, and therefore this field of research is of growing interest. Many techniques employed to study DNA methylation of the nuclear genome are also applicable to mitochondrial epigenetic studies. In this chapter, we describe a protocol for the isolation of mitochondrial DNA from peripheral blood samples and the analysis of 5-methylcytosine content by bisulfite pyrosequencing.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zhang X, Lin S, Funk WE, Hou L (2013) Environmental and occupational exposure to chemicals and telomere length in human studies. Occup Environ Med 70:743–749

    Article  CAS  PubMed  Google Scholar 

  2. Dosunmu R, Alashwal H, Zawia NH (2012) Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging. Mech Ageing Dev 133:435–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bodin J, Bolling AK, Becher R, Kuper F, Lovik M, Nygaard UC (2013) Transmaternal bisphenol a exposure accelerates diabetes type 1 development in NOD mice. Toxicol Sci 137(2):311–323

    Article  PubMed  Google Scholar 

  4. Pan WC, Seow WJ, Kile ML, Hoffman EB, Quamruzzaman Q, Rahman M et al (2013) Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh. Am J Epidemiol 178:1563–1570

    Article  PubMed Central  PubMed  Google Scholar 

  5. Loane C, Pilinis C, Lekkas TD, Politis M (2013) Ambient particulate matter and its potential neurological consequences. Rev Neurosci 24:323–335

    Article  PubMed  Google Scholar 

  6. Silins I, Hogberg J (2011) Combined toxic exposures and human health: biomarkers of exposure and effect. Int J Environ Res Public Health 8:629–647

    Article  PubMed Central  PubMed  Google Scholar 

  7. Byun HM, Motta V, Panni T, Bertazzi PA, Apostoli P, Hou L et al (2013) Evolutionary age of repetitive element subfamilies and sensitivity of DNA methylation to airborne pollutants. Part Fibre Toxicol 10:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B et al (2009) Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect 117:217–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D et al (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67:876–880

    Article  CAS  PubMed  Google Scholar 

  10. Byun HM, Baccarelli AA (2014) Environmental exposure and mitochondrial epigenetics: study design and analytical challenges. Hum Genet 133(3):247–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Davidson SM, Duchen MR (2007) Endothelial mitochondria: contributing to vascular function and disease. Circ Res 100:1128–1141

    Article  CAS  PubMed  Google Scholar 

  12. Iacobazzi V, Castegna A, Infantino V, Andria G (2013) Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 110:25–34

    Article  CAS  PubMed  Google Scholar 

  13. Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31:16619–16636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Manev H, Dzitoyeva S, Chen H (2012) Mitochondrial DNA: a blind spot in neuroepigenetics. Biomol Concepts 3:107–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dzitoyeva S, Chen H, Manev H (2012) Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol Aging 33:2881–2891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sun C, Reimers LL, Burk RD (2011) Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol 121:59–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Byun HM, Panni T, Motta V, Hou L, Nordio F, Apostoli P et al (2013) Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 10:18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM (2011) DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A 108:3630–3635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Infantino V, Castegna A, Iacobazzi F, Spera I, Scala I, Andria G et al (2011) Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. Mol Genet Metab 102:378–382

    Article  CAS  PubMed  Google Scholar 

  20. Song L, James SR, Kazim L, Karpf AR (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 77:504–510

    Article  CAS  PubMed  Google Scholar 

  21. Hong EE, Okitsu CY, Smith AD, Hsieh CL (2013) Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol Cell Biol 33:2683–2690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mikeska T, Bock C, El-Maarri O, Hubner A, Ehrentraut D, Schramm J et al (2007) Optimization of quantitative MGMT promoter methylation analysis using pyrosequencing and combined bisulfite restriction analysis. J Mol Diagn 9:368–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Aparicio A, North B, Barske L, Wang X, Bollati V, Weisenberger D et al (2009) LINE-1 methylation in plasma DNA as a biomarker of activity of DNA methylation inhibitors in patients with solid tumors. Epigenetics 4:176–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834

    Article  PubMed Central  PubMed  Google Scholar 

  25. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyang-Min Byun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Byun, HM., Barrow, T.M. (2015). Analysis of Pollutant-Induced Changes in Mitochondrial DNA Methylation. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1265. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2288-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2288-8_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2287-1

  • Online ISBN: 978-1-4939-2288-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics