Skip to main content

Synthesis and Testing of Novel Isomeric Mitochondriotropic Derivatives of Resveratrol and Quercetin

  • Protocol
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1265))

Abstract

We report here the synthetic procedures to obtain mitochondria-targeted resveratrol and quercetin derivatives. These two compounds were selected among plant polyphenols because both are well studied and have many health-promoting actions. The synthetic strategies reported here are however expected to be adaptable to other polyphenols with similar reactivity at the phenolic hydroxyls.

Mitochondrial targeting can be achieved by incorporating in the molecule an “electrophoretic” membrane-permeant, triphenylphosphonium cation. We have generally chosen to link it via a butyl spacer forming an ether bond with one of the phenolic oxygens. The first step toward the synthesis of all mitochondriotropic derivatives described in this work is the production of a regiospecific -(4-O-chlorobutyl) derivative. Triphenylphosphonium (P+Ph3I) is then introduced through two consecutive nucleophilic substitution steps: -Cl→-I→-P+Ph3I. Pure mono-substituted chlorobutyl regioisomers are obtained by purification from the reaction mixture in the case of resveratrol, while specific protection strategies are required for quercetin to favor alkylation of one specific hydroxyl.

Physicochemical properties of the derivatives (i.e., water solubility, affinity for cell membranes) can be furthermore modulated by functionalization of the remaining hydroxyls; we report here synthetic protocols to obtain acetylated and methylated analogs.

We also briefly describe how to assess mitochondrial accumulation of the derivatives; the proposed techniques are the use of a TPP+-selective electrode (with isolated rat liver mitochondria) and fluorescence microscopy (with cultured cells).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halliwell B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476:107–112

    Article  CAS  PubMed  Google Scholar 

  2. De Marchi U, Biasutto L, Garbisa S, Toninello A, Zoratti M (2009) Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: a demonstration of the ambivalent redox character of polyphenols. Biochim Biophys Acta 1787:1425–1432

    Article  PubMed  Google Scholar 

  3. Calabrese V, Cornelius C, Trovato A, Cavallaro M, Mancuso C, Di Rienzo L, Condorelli D, De Lorenzo A, Calabrese EJ (2010) The hormetic role of dietary antioxidants in free radical-related diseases. Curr Pharm Des 16:877–883

    Article  CAS  PubMed  Google Scholar 

  4. Hou DX, Kumamoto T (2010) Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid Redox Signal 13:691–719

    Article  CAS  PubMed  Google Scholar 

  5. Seifried HE, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579

    Article  CAS  PubMed  Google Scholar 

  6. Harikumar KB, Aggarwal BB (2008) Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 7:1020–1035

    Article  CAS  PubMed  Google Scholar 

  7. Lin X, Wu G, Huo WQ, Zhang Y, Jin FS (2012) Resveratrol induces apoptosis associated with mitochondrial dysfunction in bladder carcinoma cells. Int J Urol 19:757–764

    Article  CAS  PubMed  Google Scholar 

  8. Delmas D, Solary E, Latruffe N (2011) Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe. Curr Med Chem 18:1100–1121

    Article  CAS  PubMed  Google Scholar 

  9. Liu KC, Yen CY, Wu RS, Yang JS, Lu HF, Lu KW, Lo C, Chen HY, Tang NY, Wu CC et al (2012) The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells. Environ Toxicol 29(4):428–439

    Article  CAS  PubMed  Google Scholar 

  10. Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382

    Article  CAS  PubMed  Google Scholar 

  11. Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230s–242s

    CAS  PubMed  Google Scholar 

  12. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Biasutto L, Mattarei A, Marotta E, Bradaschia A, Sassi N, Garbisa S, Zoratti M, Paradisi C (2008) Development of mitochondria-targeted derivatives of resveratrol. Bioorg Med Chem Lett 18:5594–5597

    Article  CAS  PubMed  Google Scholar 

  14. Mattarei A, Biasutto L, Marotta E, De Marchi U, Sassi N, Garbisa S, Zoratti M, Paradisi C (2008) A mitochondriotropic derivative of quercetin: a strategy to increase the effectiveness of polyphenols. Chembiochem 9:2633–2642

    Article  CAS  PubMed  Google Scholar 

  15. Mattarei A, Sassi N, Durante C, Biasutto L, Sandonà G, Marotta E, Garbisa S, Gennaro A, Paradisi C, Zoratti M (2011) Redox properties and cytotoxicity of synthetic isomeric mitochondriotropic derivatives of the natural polyphenol quercetin. Eur J Org Chem 2011:5577–5586

    Article  CAS  Google Scholar 

  16. Sassi N, Biasutto L, Mattarei A, Carraro M, Giorgio V, Citta A, Bernardi P, Garbisa S, Szabo I, Paradisi C et al (2012) Cytotoxicity of a mitochondriotropic quercetin derivative: mechanisms. Biochim Biophys Acta 1817:1095–1106

    Article  CAS  PubMed  Google Scholar 

  17. Sassi N, Mattarei A, Azzolini M, Bernardi P, Szabo I, Paradisi C, Zoratti M, Biasutto L (2014) Mitochondria-targeted resveratrol derivatives act as cytotoxic pro-oxidants. Curr Pharm Des 20:172–179

    Article  CAS  PubMed  Google Scholar 

  18. Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777:1028–1031

    Article  CAS  PubMed  Google Scholar 

  19. Smith RA, Hartley RC, Cocheme HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352

    Article  CAS  PubMed  Google Scholar 

  20. Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG et al (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787:437–461

    Article  CAS  PubMed  Google Scholar 

  21. Bouktaib M, Lebrun S, Atmani A, Rolando C (2002) Hemisynthesis of all the O-monomethylated analogues of quercetin including the major metabolites, through selective protection of phenolic functions. Tetrahedron 58:10001–10009

    Article  CAS  Google Scholar 

  22. Rao KV, Owoyale JA (1976) Partial methylation of quercetin: direct synthesis of tamarixetin, ombuin and ayanin. J Heterocycl Chem 13:1293–1295

    Article  CAS  Google Scholar 

  23. Slabbert NP (1977) Ionisation of some flavanols and dihydroflavonols. Tetrahedron 33:821–824

    Article  CAS  Google Scholar 

  24. Mattarei A, Biasutto L, Rastrelli F, Garbisa S, Marotta E, Zoratti M, Paradisi C (2010) Regioselective O-derivatization of quercetin via ester intermediates. An improved synthesis of rhamnetin and development of a new mitochondriotropic derivative. Molecules 15:4722–4736

    Article  CAS  PubMed  Google Scholar 

  25. Metodiewa D, Jaiswal AK, Cenas N, Dickancaite E, Segura-Aguilar J (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 26:107–116

    Article  CAS  PubMed  Google Scholar 

  26. Lolli G, Cozza G, Mazzorana M, Tibaldi E, Cesaro L, Donella-Deana A, Meggio F, Venerando A, Franchin C, Sarno S et al (2012) Inhibition of protein kinase CK2 by flavonoids and tyrphostins. Biochemistry 51:6097–6107

    Article  CAS  PubMed  Google Scholar 

  27. Serviddio G, Sastre J (2010) Measurement of mitochondrial membrane potential and proton leak. Methods Mol Biol 594:107–121

    Article  CAS  PubMed  Google Scholar 

  28. Burgess J (1978) Metal Ions in solution. Ellis Horwood, Chichester

    Google Scholar 

  29. Gritti F, Guiochon G (2006) Influence of the degree of coverage of C18-bonded stationary phases on the mass transfer mechanism and its kinetics. J Chromatogr A 1128:45–60

    Article  CAS  PubMed  Google Scholar 

  30. McCalley DV (2010) The challenges of the analysis of basic compounds by high performance liquid chromatography: some possible approaches for improved separations. J Chromatogr A 1217:858–880

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Zoratti for support and useful discussions. This work was supported by grants from the Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) (“Developing a Pharmacology of Polyphenols”), from the Italian Ministry of the University and Research (PRIN n. 20107Z8XBW_004), and by the CNR Project of Special Interest on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Biasutto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Biasutto, L., Mattarei, A., Paradisi, C. (2015). Synthesis and Testing of Novel Isomeric Mitochondriotropic Derivatives of Resveratrol and Quercetin. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1265. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2288-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2288-8_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2287-1

  • Online ISBN: 978-1-4939-2288-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics